Batteries - Potential Electrical Energy Storage
Battery Types -
Energy Storage
-
Recycling
Battery is an electrical energy storage device consisting of one or more
electrochemical cells with external connections
that provide power
to electrical devices such as
flashlights,
smartphones, and
electric cars.
When a battery is supplying
electric power, its positive terminal is the
cathode and its negative terminal is the
anode. The terminal marked
negative is the source of
electrons that when connected to an external
circuit will flow and deliver energy to an external device. When a battery
is connected to an external circuit, electrolytes are able to move as ions
within, allowing the
chemical reactions to be completed at the separate
terminals and so deliver energy to the external circuit. It is the
movement of those
ions within the battery which allows current to flow out
of the battery to perform
work. Historically the term "battery"
specifically referred to a device composed of multiple cells, however the
usage has evolved to additionally include devices composed of a single cell.
Negative charge
repels, and energy
flows outward. Electrons have a
negative charge and can be
easily moved between atoms.
Positive charge
attracts, and energy flows inward. Protons have a
positive charge and
cannot move between
atoms. When you use a cloth to
rub an insulator such as a balloon or a
plastic ruler, electrons are rubbed from one to the other.
Make an AA Battery (youtube) -
Electric Potential Difference
(voltage).
Baghdad Battery is a set of three artifacts which were found together:
a ceramic pot, a tube of copper, and a rod of iron. It was discovered in
modern Khujut Rabu, Iraq, close to the metropolis of Ctesiphon, the
capital of the Parthian (
150
BC – 223 AD) and Sasanian (224–650 AD) empires, and it is considered
to date from either of these periods. Its origin and purpose remain
unclear. It was hypothesized by some researchers that the object
functioned as a galvanic cell, possibly used for electroplating, or some
kind of electrotherapy, but there is no electroplated object known from
this period. An alternative explanation is that it functioned as a storage
vessel for sacred scrolls.
History of the Battery (wiki).
Egyptian Pyramids (wiki).
Voltaic Pile was
the first electrical battery that could continuously provide an electric
current to a circuit. It was invented by
Alessandro Volta, who published his experiments in 1799. The voltaic
pile then enabled a rapid series of discoveries.
Electrode is an
electrical
conductor used to make
contact with a nonmetallic part of a
circuit (e.g. a semiconductor, an electrolyte, a vacuum or air).
Cathode is the
electrode from which a conventional current leaves a
polarized electrical
device. (This definition can be recalled by using the mnemonic CCD for
cathode current departs.) A conventional current describes the direction
in which positive electronic charges move. Electrons have a negative
charge, so the movement of electrons is opposite to the conventional
current flow. Consequently, the mnemonic cathode current departs also
means that
electrons flow
into the device's cathode.
Hybrid Cathodes (MIT).
Anode is an electrode
through which conventional current flows into a polarized electrical
device. A common mnemonic is ACID for "anode current into device". The
direction of (positive) electric current is opposite to the direction of
electron flow: (negatively charged) electrons flow out the anode to the
outside
circuit.
Electrolyte is a
substance that produces an electrically
conducting solution when dissolved
in a polar solvent, such as water. The dissolved electrolyte separates
into
cations and
anions, which disperse uniformly through the
solvent.
Electrically, such a solution is neutral.
If an
electric potential is applied to such a solution, the cations of the
solution are drawn to the electrode that has an abundance of electrons,
while the anions are drawn to the electrode that has a
deficit of
electrons. The movement of anions and cations in opposite directions
within the solution amounts to a current. This includes most soluble
salts, acids, and bases. Some gases, such as hydrogen chloride, under
conditions of high
temperature or low
pressure can also function as
electrolytes. Electrolyte solutions can also result from the dissolution
of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g.,
polystyrene sulfonate), termed "polyelectrolytes", which contain charged
functional groups. A substance that dissociates into ions in solution
acquires the capacity to conduct electricity. Sodium, potassium, chloride,
calcium, magnesium, and phosphate are examples of electrolytes, informally
known as "lytes".
Capacitors -
Body Electrolytes.
Giant Charge Reversal observed for the first time. Charged surfaces
submerged in an electrolyte solution can sometimes become oppositely charged.
Battery's Hidden Layer Revealed. Microscopically thin layer that forms
between the liquid electrolyte and solid electrode in lithium-ion batteries.
Seeing 'under the hood' in batteries. A high-sensitivity
X-ray technique is attracting a
growing group of scientists because it provides a deep, precise dive into
battery chemistry and how the individual ingredients of battery materials
behave beneath the surface.
Paper-thin gallium oxide transistor handles more than 8,000 volts. The
transistor could lead to smaller and more efficient electronic systems
that control and convert electric power -- a field of study known as power
electronics -- in
electric cars,
locomotives and airplanes. In turn, this could help improve how far these
vehicles can travel.
Million Mile Battery - If you drive
your electric car 25 miles a day or drive 200 miles a week, that would be
around 800 miles a month or 10,000 miles a year. So your car battery will
last 100 years.
Electro Chemistry
Electrochemistry
is the study of
chemical processes that cause
electrons to move. This
movement of electrons is called electricity, which can be generated by
movements of electrons from one element to another in a reaction known as
an oxidation-reduction ("redox") reaction. It is the branch of
physical
chemistry that studies the relationship between electricity, as a
measurable and quantitative phenomenon, and identifiable chemical change,
with either electricity considered an outcome of a particular
chemical
change or vice versa. These reactions involve electric charges moving
between electrodes and an electrolyte (or ionic species in a solution).
Thus electrochemistry deals with the interaction between electrical energy
and chemical change. When a chemical reaction is caused by an externally
supplied current, as in electrolysis, or if an electric current is
produced by a spontaneous chemical reaction as in a battery, it is called
an electrochemical reaction.
Chemical reactions where electrons are
transferred directly between molecules and/or atoms are called
oxidation-reduction or (redox) reactions. In general, electrochemistry
describes the overall reactions when individual redox reactions are
separate but connected by an external electric circuit and an intervening
electrolyte.
Electro-Chemistry.
Electrochemistry deals
with the interaction between
electrical energy and
chemical change. When a
chemical reaction is caused by an externally supplied current, as in
electrolysis, or if an electric current is produced by a spontaneous
chemical reaction as in a battery, it is called an electrochemical
reaction.
Electrochemical Production of Glycolic Acid from Oxalic Acid Using a
Polymer Electrolyte Alcohol Electrosynthesis Cell Containing a Porous TiO2
Catalyst.
Bio-Electro-Chemistry is a branch of electrochemistry and biophysical
chemistry concerned with
electrophysiological topics like cell
electron-proton transport, cell membrane potentials and electrode
reactions of redox enzymes.
Electric
Nature -
Bio- Battery -
Electrolysis is a technique that uses a
direct electric current (DC)
to drive an otherwise non-spontaneous
chemical reaction.
Electrolysis is commercially important as a stage in the
separation of
elements from naturally occurring sources such as ores using an
electrolytic cell. The
voltage that is needed for electrolysis to occur is
called the
decomposition potential,
which is the minimum voltage (difference in electrode potential) between
anode and cathode of an electrolytic cell that is needed for electrolysis
to occur.
Hydrolysis is a term used for both an electro-chemical process and a
biological one. The hydrolysis of
water is the separation of water molecules
into
hydrogen and
oxygen atoms (
water
splitting) using electricity
(electrolysis). Biological hydrolysis is the cleavage of biomolecules
where a water molecule is consumed to effect the separation of a larger
molecule into component parts. When a carbohydrate is broken into its
component sugar molecules by hydrolysis (e.g. sucrose being broken down
into glucose and fructose), this is termed saccharification. Generally,
hydrolysis or saccharification is a step in the degradation of a
substance. Hydrolysis can be the reverse of a condensation reaction in
which two molecules join together into a larger one and eject a water
molecule. Thus hydrolysis adds water to break down, whereas condensation
builds up by removing water and any other solvents. Some hydration
reactions are hydrolysis.
Electrolytic
Cell is an
electrochemical cell that drives a non-spontaneous
redox reaction through the
application of electrical energy. They are often used to decompose
chemical compounds, in a process called electrolysis—the Greek word lysis
means to
break up.
Electrophoretic Deposition is a term for a broad range of industrial
processes which includes electrocoating, cathodic electrodeposition,
anodic electrodeposition, and electrophoretic coating, or electrophoretic
painting. A characteristic feature of this process is that colloidal
particles suspended in a liquid medium migrate under the influence of an
electric field (electrophoresis) and are deposited onto an electrode. All
colloidal particles that can be used to form stable suspensions and that
can carry a charge can be used in electrophoretic deposition. This
includes materials such as polymers, pigments, dyes, ceramics and metals.
Electroplating is a process that uses
electric current to reduce
dissolved metal cations so that they form a thin coherent metal coating on
an electrode. The term is also used for electrical oxidation of anions on
to a solid substrate, as in the formation silver chloride on silver wire
to make silver/silver-chloride electrodes. Electroplating is primarily
used to change the surface properties of an object (such as abrasion and
wear resistance, corrosion protection, lubricity, aesthetic qualities),
but may also be used to build up thickness on undersized parts or to form
objects by electroforming.
Catalysis is the increase in the rate of a
chemical
reaction due to the participation of an additional substance called a
catalyst.
Chemical Energy is the
potential of a chemical substance to undergo a
transformation through a chemical reaction to transform other chemical
substances. Examples include batteries, food, gasoline, and more. Breaking
or making of chemical bonds involves
energy, which may be either absorbed
or evolved from a chemical system. Energy that can be released (or
absorbed) because of a reaction between a set of chemical substances is
equal to the difference between the energy content of the products and the
reactants, if the initial and final temperatures are the same. This change
in energy can be estimated from the bond energies of the various chemical
bonds in the reactants and products.
Bio-Batteries -
Fuel Cells -
Photosynthesis -
Chemical Synthesis.
Building a better battery with machine learning. Argonne researchers
first created a highly accurate database of roughly 133,000 small organic
molecules that could form the basis of battery electrolytes. Because using
G4MP2 to resolve each of the 166 billion molecules would have required an
impossible amount of computing time and power, the research team used a
machine learning
algorithm to relate the precisely known structures from the smaller
data set to much more coarsely modeled structures from the larger data
set. The machine learning algorithm gives us a way to look at the
relationship between the atoms in a large molecule and their neighbors, to
see how they bond and interact, and look for similarities between those
molecules and others we know quite well.
Capacitors
Capacitor is a passive two-terminal electrical
component that stores electrical
energy in an
electric field. The effect
of a capacitor is known as
capacitance. While capacitance exists between
any two electrical conductors of a
circuit in sufficiently close
proximity, a capacitor is specifically designed to provide and enhance
this effect for a variety of practical applications by consideration of
size, shape, and positioning of closely spaced conductors, and the
intervening dielectric material. A capacitor was therefore historically
first known as an electric condenser.
Static Electricity.
Energy Density is the amount of
energy stored in a given system or
region of space
per unit volume or mass, though the latter is more
accurately termed specific energy. Often only the useful or extractable
energy is measured, which is to say that chemically inaccessible energy
such as rest mass
energy is ignored.
Food Energy.
Power Density is the amount of
power
(
time rate of energy transfer) per unit volume. In energy transformers
including batteries, fuel cells, motors, etc., and also power supply units
or similar, power density refers to a volume. It is then also called
volume power density, which is expressed as W/m3. Volume power density is
sometimes an important consideration where space is constrained. In
reciprocating internal
combustion engines, power density—power per swept
volume or brake horsepower per cubic centimeter —is an important metric.
This is based on the internal capacity of the engine, not its external
size.
Energy Transfer is the portion of the energy which is transferred by
conservative forces over a distance and is measured as the work the source
system does on the receiving system. The portion of the energy which does
not do work during the transfer is called heat. Energy can be transferred
between systems in a variety of ways. Examples include the transmission of
electromagnetic energy via photons, physical collisions which transfer
kinetic energy, and the
conductive transfer of thermal energy.
Electric Double-Layer Capacitor are electrochemical
capacitors which energy storage predominant is achieved by Double-layer
capacitance. In the past, all electrochemical capacitors were called
"double-layer capacitors". However, since some years it is known that
double-layer capacitors together with pseudocapacitors are part of a new
family of electrochemical capacitors called supercapacitors, also known
as ultracapacitors. Supercapacitors do not have a conventional solid
dielectric. The capacitance value of a supercapacitor is determined by two
storage principles: Double-layer capacitance – electrostatic storage of
the electrical energy achieved by separation of charge in a Helmholtz
double layer at the interface between the surface of a conductor electrode
and an electrolytic solution electrolyte. The separation of charge
distance in a double-layer is on the order of a few Ångströms (0.3–0.8 nm)
and is static in origin. Pseudocapacitance – Electrochemical storage of
the electrical energy, achieved by redox reactions electrosorption or
intercalation on the surface of the electrode by specifically adsorbed
ions that results in a reversible faradaic charge-transfer on the
electrode.
Supercapacitor is a high-capacity electrochemical
capacitor with capacitance values much higher than other capacitors (but
lower voltage limits) that bridge the gap between electrolytic capacitors
and
rechargeable batteries. They typically store 10 to 100 times more
energy per unit volume or mass than electrolytic capacitors, can
accept
and deliver charge much faster than batteries, and tolerate many more
charge and discharge cycles than rechargeable batteries.
New Materials for High-Voltage Supercapacitors. The new material has
an energy density 2.7 times higher than conventional materials.
MIT uses neutrons in drive to improve supercapacitors.
Micro-supercapacitors possess remarkable
features of high electrochemical performance and relatively small volume
are promising candidates for energy storage in micro-devices.
Surface-Active Ionic Liquid Cholinium Dodecylbenzenesulfonate:
Self-Assembling Behavior and Interaction with Cellulase.
Candy cane Super-Capacitor could enable fast charging of mobile phones
Kilowatt Labs Supercapacitor delivers deep cycle discharge, long duration discharge as
well as fast charge / short discharge, along with all the inherent
advantages supercapacitors have over conventional chemical batteries.
Hemp based
Supercapacitor (youtube)
Skeleton Ultra
Capacitors with
Graphene.
Double Layer in
surface
science is a structure that appears on the surface of an object when
it is exposed to a fluid. The object might be a solid particle, a gas
bubble, a liquid droplet, or a porous body. The DL refers to two parallel
layers of charge surrounding the object. The first layer, the surface
charge (either positive or negative), consists of ions adsorbed onto the
object due to chemical interactions. The second layer is composed of ions
attracted to the surface charge via the Coulomb force, electrically
screening the first layer. This second layer is loosely associated with
the object. It is made of free ions that move in the fluid under the
influence of electric attraction and thermal motion rather than being
firmly anchored. It is thus called the "diffuse layer". Interfacial DLs
are most apparent in systems with a large surface area to volume ratio,
such as a colloid or porous bodies with particles or pores (respectively)
on the scale of micrometres to nanometres. However, DLs are important to
other phenomena, such as the electrochemical behaviour of electrodes. DLs
play a fundamental role in many everyday substances. For instance,
homogenized milk exists only because fat droplets are covered with a DL
that prevents their coagulation into butter. DLs exist in practically all
heterogeneous fluid-based systems, such as blood, paint, ink and ceramic
and cement slurry. The DL is closely related to electrokinetic phenomena
and electroacoustic phenomena.
Helmholtz.
Surface Science is the study of physical and chemical phenomena that
occur at the interface of two phases, including solid–liquid interfaces,
solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces.
It includes the fields of surface chemistry and surface physics. Some
related practical applications are classed as
surface engineering.
The science encompasses concepts such as heterogeneous catalysis,
semiconductor device fabrication, fuel cells, self-assembled monolayers,
and adhesives. Surface science is closely related to interface and colloid
science. Interfacial chemistry and physics are common subjects for both.
The methods are different. In addition, interface and colloid science
studies macroscopic phenomena that occur in heterogeneous systems due to
peculiarities of interfaces.
Parallel-Plate Model is the simplest model capacitor that consists of
two thin parallel conductive plates each with an area of A separated by a
uniform gap of thickness d filled with a dielectric with permittivity ε.
It is assumed the gap d is much smaller than the dimensions of the
plates. This model applies well to many practical capacitors which are
constructed of metal sheets separated by a thin layer of insulating
dielectric, since manufacturers try to keep the dielectric very uniform in
thickness to avoid thin spots which can cause failure of the capacitor.
Permittivity is the measure of capacitance that is encountered when
forming an electric field in a particular medium. More specifically,
permittivity describes the amount of charge needed to generate one unit of
electric flux in a particular medium. Accordingly, a charge will yield
more electric flux in a medium with low permittivity than in a medium with
high permittivity. Permittivity is the measure of a material's ability to
store an electric field in the polarization of the medium. The SI unit for
permittivity is farad per meter (F/m or F·m−1).
Permittivity of Space (wiki).
Flexible Super-Capacitors that can store more energy and be recharged more
than 30,000 times without degrading.
3-D Surface-Microporous Graphene material's surface is pockmarked with
micropores and folds into larger mesopores, which both increase the
surface area available for adsorption of electrolyte ions. It would be an
excellent electrode material for energy storage devices. The
interconnected mesopores are channels that can act as an electrolyte
reservoir and the surface-micropores adsorb electrolyte ions without
needing to pull the ions deep inside the micropore. To synthesize the
material from carbon dioxide, Hu's team added carbon dioxide to sodium,
followed by increasing temperature to 520 degrees Celsius. The reaction
can release heat instead of require energy input. During the process,
carbon dioxide not only forms 3-D graphene sheets, but also digs the
micropores. The tiny dents are only 0.54 nanometers deep in the surface
layers of graphene.
Conductive electrodes are key to fast-charging batteries fully
charging your cell phone in just a few seconds.
MXenes
are a class of two-dimensional inorganic compounds. These materials
consist of few atoms thick layers of transition metal carbides, nitrides,
or carbonitrides.
Ultra-Capacitor Buses
Advanced Capacitor
Circuits using series and parallel techniques (youtube)
Graphene (nano
technology)
Fast-Charging Super-Capacitor Technology. The ATI's super-capacitor
technology is based on a material called Polyaniline (PANI), which stores
energy through a mechanism known as "pseudocapacitance." This cheap
polymer material is conductive and can be used as the electrode in a
super-capacitor device. The electrode stores charge by trapping ions
within the electrode. It does this by exchanging electrons with the ion,
which "dopes" the material.
EEstor Corp -
Thermal Energy Storage.
Electrostatics is a branch of physics that
deals with the phenomena and properties of stationary or slow-moving
electric charges.
Static.
Lightweight Green Supercapacitors could charge devices in a jiffy.
Researchers have described their novel plant-based energy storage device
that could charge even electric cars within a few minutes in the near
future. Furthermore, they said their devices are flexible, lightweight and cost-effective.
Energy Storage
Energy Storage is the capture of energy produced at one time for use at a later time.
Flow Battery -
Battery Types -
Giga Factory -
Solar Heat Storage
Grid
Energy Storage is a collection of methods used to store
electrical energy on a large scale within an electrical power grid.
Rechargeable Batteries provide inexpensive power for industrial-scale
storage systems. Battery based on electrodes made of sodium and nickel
chloride and using a new type of metal mesh membrane.
Spontaneous formation of nanoscale hollow structures could boost battery
storage. An unexpected property of nanometer-scale antimony crystals
-- the spontaneous formation of hollow structures -- could help give the
next generation of lithium ion batteries higher energy density without
reducing battery lifetime. The reversibly hollowing structures could allow
lithium ion batteries to hold more energy and therefore provide more power
between charges.
Flywheel Energy Storage
New Device could Increase Battery Life of electronics by a Hundred-Fold
or 100 times more then before.
The World's
Biggest Lithium Ion Battery has started delivering power, providing
electricity for as many as 30,000 homes in South Australia.
The battery was
built in 100 days.
Alacaes
Energy Storage uses excess renewable energy to store
compress air
using adiabatic compressors, then when needed, the direction of the flow
is reversed to convert the compressed air back to electricity using
turbines. One of the lowest CAPEX per kWh of any storage technology.
Thermal Energy Storage System.
Gravitricity
is electrical power that is absorbed or generated by raising or lowering a
big weight.
Ares uses
the power of gravity for grid-scale energy storage.
Pumped-Storage Hydroelectricity is a type of hydroelectric energy
storage used by electric power systems for load balancing. The method
stores energy in the form of gravitational potential energy of
water, pumped from a lower elevation reservoir
to a higher elevation. Low-cost surplus off-peak electric power is
typically used to run the pumps. During periods of high electrical demand,
the stored water is released through turbines to produce electric power.
Although the losses of the pumping process makes the plant a net consumer
of energy overall, the system increases revenue by selling more
electricity during periods of peak demand, when electricity prices are
highest.
Dams (hydro energy).
Amber Kinetics
flywheel energy storage system for utility-scale applications.
Perpetual Motion.
Energy
Storage Terminology
List of Energy Storage Projects (wiki)
Energy Storage Research
Energy Storage
News
Smart Grid Battery Storage -
Smart Grid
Ice Bear Distributed Mature Energy Storage Technology
Electricity Storage Technology
Faster, more efficient energy storage could stem from holistic study of
layered materials. A team has developed a novel, integrated approach
to track energy-transporting ions within an ultra-thin material, which
could unlock its energy storage potential leading toward faster charging,
longer lasting devices.
Curtailment is
the reduction of output of a renewable resource below what it could have
otherwise produced. It is calculated by subtracting the energy that was
actually produced from the amount of electricity forecasted to be
generated.
Portable Backup Battery Power
Solar Powered Battery Backup
Electricity (portable) -
Portable Solar Power
Solar Energy Batteries
Power Vault is
a home electricity storage product which helps all households use energy
more efficiently and helps you reduce your energy bills by storing free
solar energy or cheap energy from the grid. The online portal allows you
to monitor your energy savings and select your smart tariff charging
schedule.
Tesla Motors Powerwall -
Smart Grid Energy Storage
Salt Water Battery -
Absorbent Glass Mat (wiki)
Deepcycle Battery -
Deep Cycle GEL -
US Battery
12v 155ah Deep Cycle Rechargeable (amazon)
Deep
Cycle Battery is a lead-acid battery designed to be
regularly deeply discharged using most of its capacity. In contrast,
starter batteries (e.g. most automotive batteries) are designed to deliver
short, high-current bursts for cranking the engine, thus frequently
discharging only a small part of their capacity. While a deep-cycle
battery can be used as a starting battery, the lower "cranking current"
implies that an oversized battery may be required. A deep-cycle battery is
designed to discharge between 45% and 75% of its capacity, depending on
the manufacturer and the construction of the battery. Although these
batteries can be cycled down to 20% charge, the best lifespan vs cost
method is to keep the average cycle at about 45% discharge. There is an
indirect correlation between the depth of discharge of the battery, and
the number of charge and discharge cycles it can perform.
Charging Batteries - Recharging Batteries
Rechargeable Battery is a type of electrical battery which can be
charged, discharged into a load, and
recharged many times, while a
non-rechargeable or primary battery is supplied fully charged, and
discarded once discharged.
Depth of Discharge (DOD) is an alternate method to indicate a
battery's state of charge (SOC). The DOD is the complement of SOC: as the
one increases, the other decreases. While the SOC units are percent points
(0% = empty; 100% = full), DOD can use Ah units (e.g.: 0 = full, 50 Ah
= empty) or percent points (100% = empty; 0% = full). As a battery may
actually have higher capacity than its nominal rating, it is possible for
the DOD value to exceed the full value (e.g.: 55 Ah or 110%),
something that is not possible when using state of charge. Not letting
your phone get below 50 percent can help extend its life? And not charging
to 100 percent too because being charged at 100 percent produces a small
amount of heat, and lithium-ion batteries hate heat.
Charging Station supplies electric energy for the
recharging of electric vehicles, such as plug-in electric vehicles,
including electric cars, neighborhood electric vehicles and plug-in
hybrids.
Charging Locations -
Charge Point -
Battery Switch Station
Sila Nanotechnologies
Batteries through higher volumetric energy density Sila materials
enable more energy in each cell means fewer cells for the same battery
pack capacity and vehicle range, and therefore much lower cost overall.
Instantly Rechargeable Battery could change the future of Electric and Hybrid
Automobiles.
Self-Assembling 3D Battery would Charge in Seconds.
Charging electric cars up to 90% in 6 minutes. New Li-ion battery
electrode material that can achieve high-energy density and high power
capability per volume without reducing particle size.
Battery Research could Triple Range of Electric Vehicles. The
breakthrough involves the use of negative electrodes made of lithium
metal, a material with the potential to dramatically increase battery
storage capacity. This will mean cheap, safe, long-lasting batteries that
give people much more range in their electric vehicles.
EMBATT Bipolar Electrode Ceramic Technologies. Individual battery
cells are not strung separately side-by-side in small sections; instead,
they are stacked directly one above the other across a large area. The
entire structure for the housing and the contacting is therefore
eliminated. As a result, more batteries fit into the car. Through the
direct connection of the cells in the stack, the current flows over the
entire surface of the battery. The electrical resistance is thereby
considerably reduced.
New Electric Car Batteries (youtube)
Tesla Motors Supercharger -
Wireless Charging
-
Human Energy Charging
Internal
Resistance. When the power source delivers current, the measured
voltage output is lower than the no-load voltage; the difference is the
voltage drop (the product of current and resistance) caused by the
internal resistance. The concept of internal resistance applies to all
kinds of electrical sources and is useful for analyzing many types of
electrical circuits.
Battery Management System is any electronic system
that manages a rechargeable battery (cell or battery pack), such as by
protecting the battery from operating outside its Safe Operating Area,
monitoring its state, calculating secondary data, reporting that data,
controlling its environment, authenticating it and / or balancing it. A
battery pack built together with a battery management system with an
external communication data bus is a smart battery pack. A smart battery
pack must be charged by a smart battery charger.
Capacitors
New Breakthrough In Battery Charging Technology. UNIST researchers
introduce new battery charging technology that uses light to charge
batteries. UNIST has developed a single-unit, photo-rechargeable portable
power source based on high-efficiency
silicon
solar cells and lithium-ion batteries (LIBs). This newly-developed
power source is designed to work under
sunlight and indoor
lighting, allowing users to power their portable electronics anywhere
with access to light. In addition, the new device could power electric
devices even in the absence of light.
Battery Types
Voltaic Pile was the first electrical battery that could continuously
provide an electric current to a circuit. It was invented by Alessandro
Volta, who published his experiments in 1800.
Super-Capacitors (energy storage) -
Fuel Cells -
Rechargeable -
Battery
Types List (wiki)
Atomic Battery are used to describe a device which
uses energy from the decay of a radioactive
isotope to generate electricity. Like
nuclear reactors, they
generate electricity from atomic energy, but differ in that they do not
use a chain reaction. Compared to other batteries they are very costly,
but have an extremely long life and high energy density, and so they are
mainly used as power sources for equipment that must operate unattended
for long periods of time, such as spacecraft, pacemakers, underwater
systems and automated scientific stations in remote parts of the world.
Betavoltaic Device is also known as betavoltaic cells, are generators
of electric current, in effect a form of battery, which use energy from a
radioactive source emitting beta particles (electrons). A common source
used is the hydrogen isotope, tritium. Unlike most nuclear power sources,
which use
nuclear radiation to generate heat, which then is used to
generate electricity (thermoelectric and thermionic sources), betavoltaics
use a non-thermal conversion process; converting the electron-hole pairs
produced by the ionization trail of beta particles traversing a
semiconductor. Betavoltaic power sources (and the related technology of
alphavoltaic power sources) are particularly well-suited to low-power
electrical applications where long life of the energy source is needed,
such as implantable medical devices or military and space applications.
Diamond Battery is proposed to run on the radioactivity of waste
graphite blocks (previously used as neutron moderator material in nuclear
reactors) and would last for thousands of years. The battery, developed by
the University of Bristol, is a betavoltaic cell using carbon-14 in the
form of diamond-like carbon (DLC) as the beta radiation source, and
additional normal-carbon DLC to make the necessary semiconductor junction
and encapsulate the
carbon-14.
Oxford Electric Bell is an experimental electric bell that was set up
in 1840 and which has run nearly continuously ever since.
VRLA
Battery (valve-regulated lead-acid battery), more commonly known as a
sealed lead-acid (SLA), gel cell, or maintenance free battery, is a type
of lead-acid rechargeable battery.
Alkaline Battery are a type of primary battery
dependent upon the reaction between zinc and manganese(IV) oxide (Zn/MnO2).
A rechargeable alkaline battery allows reuse of specially designed cells.
Batteriser: Extend Battery Life by 8X
Lead Acid Battery despite having a very low
energy-to-weight ratio and a low energy-to-volume ratio, its ability to
supply high surge currents means that the cells have a relatively large
power-to-weight ratio. These features, along with their low cost, makes it
attractive for use in motor vehicles to provide the high current required
by automobile starter motors.
Nickel Cadmium Battery is a type of rechargeable
battery using nickel oxide hydroxide and metallic cadmium as electrodes.
The abbreviation NiCd is derived from the chemical symbols of nickel (Ni)
and cadmium (Cd): the abbreviation NiCad is a registered trademark of SAFT
Corporation, although this brand name is commonly used to describe all
Ni–Cd batteries.
Prismatic Cells are
encased in aluminum or steel for stability. Jelly-rolled or stacked, the
cell is space-efficient but can be costlier to manufacture than the
cylindrical cell. Modern prismatic cells are used in the electric
powertrain and energy storage systems.
Cylindrical Batteries are round batteries with height longer than
their diameter.
Solid-State Batteries
Aluminum Air Battery produces electricity from the reaction of oxygen
in the air with aluminium. They have one of the
highest energy densities of all batteries, but they are not widely
used because of problems with high anode cost and byproduct removal when
using traditional electrolytes. This has restricted their use to mainly
military applications. However, an electric vehicle with aluminium
batteries has the potential for up to eight times the range of a
lithium-ion battery with a significantly lower total weight. Aluminium–air
batteries are primary cells, i.e., non-rechargeable. Once the aluminium
anode is consumed by its reaction with atmospheric oxygen at a cathode
immersed in a water-based electrolyte to form hydrated aluminium oxide,
the battery will no longer produce electricity. However, it is possible to
mechanically recharge the battery with new aluminium anodes made from
recycling the hydrated aluminium oxide. Such recycling would be essential
if aluminium–air batteries are to be widely adopted.
Power Density is the amount of power (time rate of energy transfer)
per unit volume.
Capacitors.
Energy Density is the amount of energy stored in a given system or
region of space per unit volume.
Lithium Polymer Battery is a rechargeable battery of lithium-ion
technology using a polymer electrolyte instead of a liquid electrolyte.
High conductivity semisolid (gel) polymers form this electrolyte. These
batteries provide higher specific energy than other lithium battery types
and are used in applications where weight is a critical feature, like
mobile devices and radio-controlled aircraft.
Lithium-ion Batteries
is a type of rechargeable battery in which lithium ions
move from the negative electrode to the positive electrode during
discharge and back when charging. Li-ion batteries use an intercalated
lithium compound as one electrode material, compared to the metallic
lithium used in a non-rechargeable lithium battery. The electrolyte, which
allows for ionic movement, and the two electrodes are the constituent
components of a lithium-ion battery cell.
Lithium iron phosphate (LiFePO4), lithium ion manganese oxide battery (LiMn2O4,
Li2MnO3, or LMO) and lithium nickel manganese cobalt oxide (LiNiMnCoO2 or
NMC) offer lower energy density, but longer lives and inherent safety.
Such batteries are widely used for electric tools, medical equipment
and other roles. NMC in particular is a leading contender for automotive
applications. Lithium nickel cobalt aluminum oxide (LiNiCoAlO2 or NCA) and
lithium titanate (Li4Ti5O12 or LTO) are specialty designs aimed at
particular niche roles. The newer lithium–sulfur batteries promise the
highest performance-to-weight ratio.
Dendrites.
Lithium-ion Battery Electrode Protection
Thermal Runaway
(feedback effects)
Lithium-Oxygen Battery which has very high energy density, is more than
90% efficient, and, to date, can be recharged more than 2000 times
Photoelectrode Lithium–Oxygen Battery.
Predicting the slow death of lithium-ion batteries. Stanford
technology predicts the slow death of lithium-ion batteries.
Lithium-Carbon Dioxide Batteries consist of
two electrodes—an anode made of lithium and a cathode made of carbon—and
an electrolyte that shuttles charged particles between the electrodes as
the battery is charged and discharged. lithium carbonate and carbon build
up in the catalyst and slowly destroys the battery. But this problem is
being fixed, which would make the battery last 7 times longer.
New Coating could have big implications for Lithium Batteries. Coating
provides extra layer of protection for battery cathodes.
Nickel-manganese-cobalt cathode material and encapsulated them with a
sulfur-containing polymer called PEDOT. This polymer provides the cathode
a layer of protection from the battery's electrolyte as the battery
charges and discharges.
Liquid Microscopy technique reveals new problem with Lithium-Oxygen
Batteries.
Lithium Peroxide develops in the liquid electrolyte of lithium-oxygen
batteries, and is a contributor to the slow down and ultimate death of
these batteries.
Kair Battery
is a breathing solar battery that recharges itself with air and light.
New Lithium-Rich Battery could last much longer. Battery leverages
both iron and oxygen to drive more lithium ions.
Lithium-Ion Batteries for extreme environments.
Single-crystal technology holds promise for next-generation lithium-ion
batteries. Scientists have improved a promising battery technology,
creating a single-crystal, nickel-rich cathode that is hardier and more
efficient than before. It's one step toward improved lithium-ion batteries
that are common in electric vehicles today. Increasing nickel content in
the cathode is on the drawing board of lithium-ion battery makers largely
because of its relatively low cost, wide availability and low toxicity
compared to other key battery materials, such as cobalt.
New class of cobalt-free cathodes could enhance energy density of next-gen
lithium-ion batteries. Researchers have developed a new family of
cathodes with the potential to replace the costly cobalt-based cathodes
typically found in today's lithium-ion batteries that power electric
vehicles and consumer electronics. The new class called NFA, which stands
for nickel-, iron- and aluminum-based cathode, is a derivative of lithium
nickelate and can be used to make the positive electrode of a lithium-ion
battery. These novel cathodes are designed to be fast charging, energy
dense, cost effective, and longer lasting.
Organic Lithium Batteries Operated at −70°C. Researchers in China have
developed a battery with organic compound electrodes that can function at
-70 degrees Celsius.
Next-gen Lithium-Metal Batteries for electric vehicles, smart grids.
Using supercomputers, researchers have simulated the behavior of graphene
oxide nanosheets that can limit the formation of
dendrites.
Prieto Battery
3D Lithium-Ion Battery Technology that will deliver transformational
performance. Very high power density, long cycle life, Safe, Greater
energy density.
Lithium Sulfur Battery is a type of rechargeable
battery, notable for its high specific energy. The low atomic weight of
lithium and moderate weight of sulfur means that Li–S batteries are
relatively light (about the density of water).
Fast Charging Lithium-ion Battery
Lithium Iron Phosphate Battery. The lithium iron phosphate battery (
LiFePO4
battery) or LFP battery (lithium ferrophosphate), is a type of
rechargeable battery, specifically a lithium-ion battery, using LiFePO4 as
the cathode material, and a graphitic carbon electrode with a metallic
backing as the anode. The specific capacity of LiFePO4 is higher than that
of the related lithium cobalt oxide (LiCoO2) chemistry, but its energy
density is less due to its lower operating voltage. The main drawback of
LiFePO4 is its low electrical conductivity. Therefore, all the LiFePO4
cathodes under consideration are actually LiFePO4/C. Because of low cost,
low toxicity, well-defined performance, long-term stability, etc. LiFePO4
is finding a number of roles in vehicle use, utility scale stationary
applications, and backup power.
$45 LiFePo4 Cells
for your DIY Powerwall (youtube) -
Build a DIY Lithium
LiFePo4 Headway 12v Battery replacement (youtube).
Asphalt may help high-capacity Lithium Metal Batteries charge 10 to 20
times faster than commercial lithium-ion batteries.
Lithium Air Battery is a metal–air electrochemical
cell or battery chemistry that uses oxidation of lithium at the anode and
reduction of oxygen at the cathode to induce a current flow.
First Fully Rechargeable Carbon Dioxide Battery with Carbon Neutrality.
Researchers are the first to show that lithium-carbon dioxide batteries
can be designed to operate in a fully rechargeable manner, and they have
successfully tested a lithium-carbon dioxide battery prototype running up
to 500 consecutive cycles of charge/recharge processes.
Extending the life of low-cost, compact, lightweight batteries.
Metal-air batteries are one of the lightest and most compact types of
batteries available, but they can have a major limitation: When not in
use, they degrade quickly, as corrosion eats away at their metal
electrodes. Now, MIT researchers have found a way to substantially reduce
that corrosion, making it possible for such batteries to have much longer
shelf lives.While typical rechargeable lithium-ion batteries only lose
about 5 percent of their charge after a month of storage, they are too
costly, bulky, or heavy for many applications. Primary (nonrechargeable)
aluminum-air batteries are much less expensive and more compact and
lightweight, but they can lose 80 percent of their charge a month. The MIT
design overcomes the problem of corrosion in aluminum-air batteries by
introducing an oil barrier between the aluminum electrode and the
electrolyte -- the fluid between the two battery electrodes that eats away
at the aluminum when the battery is on standby. The oil is rapidly pumped
away and replaced with electrolyte as soon as the battery is used. As a
result, the energy loss is cut to just 0.02 percent a month -- more than a
thousandfold improvement. A key to the new system is a thin membrane
placed between the battery electrodes. When the battery is in use, both
sides of the membrane are filled with a liquid electrolyte, but when the
battery is put on standby, oil is pumped into the side closest to the
aluminum electrode, which protects the aluminum surface from the
electrolyte on the other side of the membrane. The new battery system also
takes advantage of a property of aluminum called "underwater oleophobicity"
-- that is, when aluminum is immersed in water, it repels oil from its
surface. As a result, when the battery is reactivated and electrolyte is
pumped back in, the electrolyte easily displaces the oil from the aluminum
surface, which restores the power capabilities of the battery. Ironically,
the MIT method of corrosion suppression exploits the same property of
aluminum that promotes corrosion in conventional systems.
Metal Air Electrochemical Cell is an electrochemical cell that uses an
anode made from pure metal and an external cathode of ambient air,
typically with an aqueous or aprotic electrolyte. During discharging of a
metal–air electrochemical cell, an oxygen reduction reaction occurs in the
ambient air cathode while the metal anode is oxidized. The specific
capacity and energy density of metal–air electrochemical cells is higher
than that of lithium-ion batteries, making them a prime candidate for use
in electric vehicles. However, complications associated with the metal
anodes, catalysts, and electrolytes have hindered development and
implementation of metal–air batteries.
Reversible Nitrogen Fixation Based on a Rechargeable Lithium-Nitrogen
Battery for Energy Storage. A rechargeable Li-N2 battery is proposed
for a reversible N2 fixation process. The Li-N2 battery provides
technological progress in N2 fixation. The Li-N2 battery shows high
faradic efficiency for N2 fixation. The catalyst can improve faradic
efficiency and decrease energy consumption.
Lithium Cobalt Oxide is a chemical compound commonly
used in the positive electrodes of lithium-ion batteries.
Safe Rechargeable Battery using Glass Electrolytes, substitution of
low-cost sodium for lithium sodium is extracted from
seawater that
is widely available.
Glass Battery is a type of solid state battery. It uses a glass
electrolyte and lithium or sodium metal electrodes.
Anode-Free Zinc Battery that could someday store renewable energy.
Researchers have made a prototype of an anode-free, zinc-based battery
that uses low-cost, naturally abundant materials. Researchers used a
manganese dioxide cathode that they pre-intercalated with zinc ions, an
aqueous zinc trifluoromethanesulfonate electrolyte solution and a copper
foil current collector. During charging, zinc metal gets plated onto the
copper foil, and during discharging the metal is stripped off, releasing
electrons that power the battery. To prevent dendrites from forming, the
researchers coated the copper current collector with a layer of carbon
nanodiscs. This layer promoted uniform zinc plating, thereby preventing
dendrites, and increased the efficiency of zinc plating and stripping. The
battery showed high efficiency, energy density and stability, retaining
62.8% of its storage capacity after 80 charging and discharging cycles.
The anode-free battery design opens new directions for using aqueous
zinc-based batteries in energy storage systems.
Solid State Batteries
Solid-State
Battery is a battery that has both solid electrodes and solid
electrolytes. As a group, these materials are very good conductors of
ions, which is necessary for
good electrolyte and electrode performance, and are essentially insulating
toward electrons, which is desirable in electrolytes but undesirable in
electrodes. The high ionic conductivity minimizes the internal resistance
of the battery, thus permitting high power densities, while the high
electronic resistance minimizes its self-discharge rate, thus enhancing
its charge retention.
Solid State Energy
- SiC Nano (youtube) -
Sakti 3.
All Solid State Lithium Batteries with Solid Electrolytes
Newly-Developed Solid-Electrolyte Interphase (SEI) aims to improve Lithium
Metal Battery Life and Safety.
Semisolid Lithium-Ion -
Lithium Ceramic
Battery
Solid-State Physics is the study of rigid matter, or solids, through
methods such as quantum mechanics, crystallography, electromagnetism, and
metallurgy. It is the largest branch of condensed matter physics.
Solid-state physics studies how the large-scale properties of solid
materials result from their atomic-scale properties. Thus, solid-state
physics forms a theoretical basis of materials science. It also has direct
applications, for example in the technology of transistors and
semiconductors.
Pouch Cell makes the most efficient use of space and achieves a 90 to
95 percent packaging efficiency, the highest among battery packs.
Eliminating the metal enclosure reduces weight but the cell needs some
alternative support in the battery compartment. Rather than using a
metallic cylinder and glass-to-metal electrical feed-through for
insulation, conductive foil tabs welded to the electrode and sealed to the
pouch carry the positive and negative terminals to the outside. Figure 1
illustrates such a pouch cell.
Pouch Cell offers a simple, flexible and lightweight solution to
battery design. Pouch packs are normally Li-polymer. The energy density
can be lower and be less durable than Li-ion in the cylindrical package.
Battery that can be Bent, Stretched and Twisted. For applications in
bendable electronic devices, this is precisely the kind of battery they
need. Smart clothing items make use of wearable micro-devices or sensors
to monitor bodily functions. The two current collectors for the anode and
the cathode consist of bendable polymer composite that contains
electrically conductive carbon and that also serves as the outer shell. On
the interior surface of the composite, the researchers applied a thin
layer of micronsized silver flakes. Due to the way the flakes overlap like
roof tiles, they don't lose contact with one another when the elastomer is
stretched. This guarantees the conductivity of the current collector even
if it is subjected to extensive stretching. And in the event that the
silver flakes do in fact lose contact with each other, the electrical
current can still flow through the carbon-containing composite, albeit
more weakly. With the help of a mask, the researchers then sprayed anode
and cathode powder onto a precisely defined area of the silver layer. The
cathode is composed of lithium manganese oxide and the anode is a vanadium
oxide. Water-based electrolyte gel is environmentally more friendly than
the commercial electrolytes. In the final step, the scientists stacked the
two current collectors with the applied electrodes on top of each other,
separated by a barrier layer similar to a picture frame, while the gap in
the frame was filled with the electrolyte gel.
High Performance Solid-State Sodium-Ion Battery. Organic cathode
offers more reliable contact with electrolyte, a key to stability.
Salt Battery.
John B.
Goodenough is a German-born American professor and solid-state
physicist. He is currently a professor of mechanical engineering and
materials science at The University of Texas at Austin. He is widely
credited for the identification and development of the Li-ion rechargeable
battery as well as for developing the Goodenough–Kanamori rules for
determining the sign of the magnetic
superexchange in materials. In 2014, he received the Charles Stark
Draper Prize for his contributions to the lithium-ion battery.
Paper Battery is
an electric battery engineered to use a spacer formed largely of cellulose
(the major constituent of paper). It incorporates [nanoscopic scale
nanoscale] structures to act as high surface-area electrodes to improve
conductivity. In addition to
being unusually thin, paper batteries are flexible and
environmentally-friendly, allowing integration into a wide range of
products. Their functioning is similar to conventional chemical batteries
with the important difference that they are non-corrosive and do not
require extensive housing.
Paper Battery Powered by Bacteria. A paper battery was made by
printing thin layers of metals and other materials onto a paper surface.
Then, they placed freeze-dried "exoelectrogens" on the paper.
Exoelectrogens are a special type of bacteria that can transfer
electrons outside of their cells. The electrons, which are generated when
the bacteria make energy for themselves, pass through the cell membrane.
They can then make contact with external electrodes and power the battery.
To activate the battery, the researchers added water or saliva. Within a
couple of minutes, the liquid revived the bacteria, which produced enough
electrons to power a light-emitting diode and a calculator. The
researchers also investigated how oxygen affects the performance of
their device. Oxygen, which passes easily through paper, could soak up
electrons produced by the bacteria before they reach the electrode. The
team found that although oxygen slightly decreased power generation, the
effect was minimal. This is because the bacterial cells were tightly
attached to the paper fibers, which rapidly whisked the electrons away to
the anode before oxygen could intervene.
Superexchange is
the strong (usually)
antiferromagnetic coupling between two next-to-nearest neighbour
cations through a non-magnetic anion. In this way, it differs from direct
exchange in which there is coupling between nearest neighbor cations not
involving an intermediary anion. Superexchange is a result of the
electrons having come from
the same donor atom and being coupled with the receiving ions' spins. If
the two next-to-nearest neighbor positive ions are connected at 90 degrees
to the bridging non-magnetic anion, then the interaction can be a
ferromagnetic interaction.Superexchange was proposed by Hendrik Kramers in
1934 when he noticed that in crystals like MnO, there are Mn atoms that
interact with one another despite having nonmagnetic oxygen atoms between
them (Fig. 1). Phillip Anderson later refined Kramers' model in 1950.
Antiferromagnetism is the magnetic moments of atoms or molecules,
usually related to the spins of electrons, align in a regular pattern with
neighboring spins (on different sublattices) pointing in opposite
directions. This is, like ferromagnetism and ferrimagnetism, a
manifestation of ordered magnetism. Generally, antiferromagnetic order may
exist at sufficiently low temperatures, but vanishes at and above the Néel
temperature – named after Louis Néel, who had first identified this type
of magnetic ordering. Above the Néel temperature, the material is
typically paramagnetic.
All-Solid-State Polymer Electrolyte with Plastic Crystal Materials for
Rechargeable Lithium-ion Battery
Sodium Sulfur Battery s a type of molten-salt
battery constructed from liquid
Sodium (Na) and sulfur (S). This type of
battery has a high energy density, high efficiency of charge/discharge
(89–92%) and long cycle life, and is fabricated from inexpensive
materials. The operating temperatures of 300 to 350 °C and the highly
corrosive nature of the sodium polysulfides, primarily make them suitable
for stationary energy storage applications. The cell becomes more
economical with increasing size.
(5 kwh's for 4 hours).
Broadbit Sodium Battery
more energy, quicker charge time, production process is faster.
Potassium-Oxygen Batteries that last longer.
Battery Electric Vehicle is a type of
Electric
Vehicle (EV) that uses chemical energy stored in rechargeable battery
packs. BEVs use electric motors and motor controllers instead of internal
combustion engines (ICEs) for propulsion. They derive all power from
battery packs and thus have no internal combustion engine, fuel cell, or
fuel tank. BEVs include bicycles, scooters, skateboards, rail cars,
watercraft, forklifts, buses, trucks and cars.
Battery Technology
Battery Regulator refer to techniques that maximize
the capacity of a battery pack with multiple cells in series to make all
of its energy available for use and increase the battery's longevity. A
battery balancer or battery regulator is a device in a battery pack that
performs battery balancing. Balancers are often found in lithium-ion
battery packs for cell phones and laptop computers. They can also be found
in battery electric vehicle battery packs.
Zinc Carbon Battery is a dry cell battery that
delivers a potential of 1.5 volts between a zinc metal electrode and a
carbon rod from an electrochemical reaction between zinc and manganese
dioxide mediated by a suitable electrolyte.
Zinc Bromine Battery is a type of hybrid flow
battery. A solution of zinc bromide is stored in two tanks. When the
battery is charged or discharged the solutions (electrolytes) are pumped
through a reactor stack and back into the tanks. One tank is used to store
the electrolyte for the positive electrode reactions and the other for the
negative.
Zinc-Ion Battery that costs half the price of current lithium-ion
batteries - Waterloo chemists develop promising cheap, sustainable
battery for grid energy storage.
Aerographite is a synthetic foam consisting of a
porous interconnected network of tubular carbon.
Aluminum Battery 1 Minute Charging (7,000 charge
cycles without capacity degrading. Stable and safe)
Aluminum-Ion Battery Stanford (youtube)
A new concept could make more environmentally friendly batteries possible.
A new concept for an aluminium battery has twice the energy density as
previous versions, is made of abundant materials, and could lead to
reduced production costs and environmental impact. The idea has potential
for large scale applications, including storage of solar and wind energy.
Nano-Crystals -
Carbon Nanotube
Nanowire Battery uses nanowires to increase the
surface area of one or both of its electrodes. Some designs (silicon,
germanium and transition metal oxides), variations of the lithium-ion
battery have been announced, although none are commercially available. All
of the concepts replace the traditional graphite anode and could improve
battery performance.
100k Cycles and Beyond: Extraordinary Cycle
Stability for MnO2 Nanowires Imparted by a Gel
Electrolyte.
New Anode Material Set to Boost Lithium-ion Battery Capacity hybrid
anode using silicon-nanolayer-embedded graphite/carbon.
Food waste could store solar and wind energy
Next-generation smartphone battery inspired by the gut lithium-sulphur
battery could have five times the energy density of a typical lithium-ion
battery.
Advanced Lithium–Sulfur Batteries Enabled by a Bio-Inspired Polysulfide
Adsorptive Brush.
Flow Battery
Flow Battery is a
type of rechargeable battery where rechargeability is provided by two
chemical components dissolved in liquids contained within the system and
separated by a membrane.
Ion exchange (providing flow of electric current)
occurs through the membrane while both liquids circulate in their own
respective space. Cell voltage is chemically determined by the Nernst
equation and ranges, in practical applications, from 1.0 to 2.2 volts. The
performance of these devices is governed by the considerations of
electrochemical engineering. A flow battery is technically akin both to a
fuel cell and an electrochemical accumulator cell (electrochemical
reversibility). While it has technical advantages such as potentially
separable liquid tanks and near unlimited longevity over most conventional rechargeables, current implementations are comparatively less powerful and
require more sophisticated electronics. The energy capacity is a function
of the electrolyte volume (amount of liquid electrolyte) and the power a
function of the surface area of the electrodes.
Flow Battery (youtube)
Long-Lasting Flow Battery could Run for more than a Decade with Minimum
Upkeep. Battery stores energy in nontoxic, noncorrosive aqueous
solutions.
New Battery Material improves Flow Batteries. The material consists of
carefully structured molecules designed to be particularly
electrochemically stable in order to prevent the battery from losing
energy to unwanted reactions. Nonaqueous redox flow.
Organic Mega Flow Battery transcends lifetime, voltage thresholds.
Dubbed 'Methuselah', new molecule outlives previous chemistries.
Harvard Engineers
Organic Mega Flow Battery (youtube).
Organic Redox Flow
Batteries - The true path to grid scale energy storage? (youtube)
Scientists have designed an affordable 'flow battery' membrane that
could accelerate renewable energy for the electrical grid. Flow battery
stores electricity in tanks of liquid electrolyte.
New Battery could store wind and solar electricity affordably and at room
temperature. A new type of flow battery that involves a liquid metal
more than doubled the maximum voltage of conventional flow batteries and
could lead to affordable storage of renewable power.
Salt Water Battery
Salt Water Battery employs a concentrated saline solution as its
electrolyte. They are nonflammable and more easily recycled than batteries
that employ toxic and/or flammable materials.
Aquion Energy.
Molten Salt Battery are a class of battery that uses
molten salts as an electrolyte and offers both a high energy density and a
high power density. Traditional "use once" thermal batteries can be stored
in their solid state at room-temperature for long periods of time before
being activated by heating. Rechargeable liquid metal batteries are used
for electric vehicles and potentially also for grid energy storage, to
balance out intermittent renewable power sources such as solar panels and
wind turbines.
Sodium-Ion Batteries. Sodium, as the sixth most abundant element in
the earth’s crust.
Solid State.
Thin Layers of Water Hold Promise for the Energy Storage of the Future
Energy Storage
Silicon Air Battery is based on electrodes of oxygen
and silicon. Such batteries can be lightweight, with a high tolerance for
both extremely dry conditions and high humidity. Like other anode-air
batteries, in particular metal-air batteries, silicon–air batteries rely
on atmospheric oxygen for their cathodes; they accordingly do not include
any cathodes in their structures, and this permits economies in cost and
weight.
Aqueous Hybrid Ion Battery
uses sodium ions of saltwater as its
electricity-carrying electrolyte. Low cost.
Highly Stretchable Aqueous Batteries is a bioinspired Jabuticaba-like
hybrid carbon/polymer (HCP) composite that was developed into a
stretchable current collector using a simple and cost-effective solution
process. Using the HCP composite as a stretchable current collector, the
research team has, for the first time, developed a highly stretchable
rechargeable lithium-ion battery (ARLB) based on aqueous electrolytes.
Ceramatec
Deep Storage Battery (PDF)
Cryogenic Energy Storage is the use of low temperature (cryogenic)
liquids such as liquid air or liquid nitrogen as energy storage. Both
cryogens have been used to power cars. The inventor Peter Dearman
initially developed a liquid air car, and then used the technology he
developed for grid energy storage. The technology is being piloted at a UK
power station.
Highview power (liquid air battery).
Liquid Metal Battery (video)
Liquidmetal a series of amorphous metal alloys with
a number of desirable material features, including high tensile strength,
excellent corrosion resistance, very high coefficient of restitution and
excellent anti-wearing characteristics, while also being able to be
heat-formed in processes similar to thermoplastics. Despite the name, they
are not liquid at room temperature.
New concept turns battery technology upside-down.
Magnesium is a shiny gray solid which bears a close
physical resemblance to the other five
elements in the second
column (Group 2, or alkaline earth metals) of the periodic table: all
Group 2 elements have the same electron configuration in the outer
electron shell and a similar crystal structure.
Researchers Report Breakthrough in Magnesium Batteries. Nanostructured
Cathode, Understanding of New Electrolyte Lead to Greater Efficiency.
Lean Electrolyte Design is a game-changer for Magnesium Batteries.
Chloride-free electrolyte and organic cathode boosted energy density,
stability.
Powerful Battery Created. Metal-oxide magnesium battery cathode
material with higher density of energy storage on top of transformative
advances in safety, cost and performance in comparison to their ubiquitous
lithium-ion (Li-ion) counterparts.
Antimony is a lustrous gray metalloid, it is found
in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony
compounds have been known since ancient times and were powdered for use as
medicine and cosmetics, often known by the Arabic name, kohl.
Bio-Battery
Biobattery
is an energy storing device that is powered by organic compounds, usually
being
glucose, such as the glucose in human blood. When enzymes in human
bodies break down glucose, several electrons and protons are released.
Therefore, by using enzymes to break down glucose, bio-batteries directly
receive energy from glucose. These batteries then store this energy for
later use. This concept is almost identical to how
both plants and many
animals obtain energy. Although the batteries are still being tested
before being commercially sold, several research teams and engineers are
working to further advance the development of these batteries.
Electric Nature -
Zero Point Batteries.
Purple Bacteria 'Batteries' turn Sewage into Clean Energy.
Purple Phototrophic Bacteria -- which can store energy from light --
when supplied with an electric current can recover near to 100 percent of
carbon from any type of organic waste, while generating hydrogen gas for
use as fuel.
Waste Energy.
Electricity-conducting bacteria yield secret to tiny batteries, big
medical advances.
Stretchable Battery made entirely out of Fabric. New microbial fuel
cell could be integrated into
wearable electronics.
Bio-Electro Chemical Reactor
are a type of bioreactor where bioelectrochemical processes can take
place. They are used in bioelectrochemical syntheses, environmental
remediation and electrochemical energy conversion. Examples of
bioelectrochemical reactors include microbial electrolysis cells,
microbial fuel cells and enzymatic biofuel cells and electrolysis cells,
microbial electrosynthesis cells, and biobatteries. This bioreactor is
divided in two parts: The anode, where the oxidation reaction takes place;
And the cathode, where the reduction occurs.
Human
Electromagnetic Field -
Human Energy -
Life Force
Biomorphic batteries could provide 72 times more energy for robots.
Like biological fat reserves store energy in animals, a new rechargeable
zinc battery integrates into the structure of a robot to provide much more
energy, researchers have shown.
Electrochemical Cell
is a device capable of either generating
electrical energy from chemical reactions or facilitating chemical
reactions through the introduction of electrical energy. A common example
of an electrochemical cell is a standard 1.5-volt cell meant for consumer
use. This type of device is known as a single Galvanic cell. A battery
consists of two or more cells, connected in either parallel or series
pattern.
Earth Battery is a pair of electrodes made of two
dissimilar metals, such as iron and copper, which are buried in the soil
or immersed in the sea. Earth batteries act as water activated batteries
and if the plates are sufficiently far apart, they can tap
telluric currents. Earth batteries are sometimes referred to as
telluric power sources and telluric generators.
Magnetite is a mineral and one of the main iron
ores. With the chemical formula Fe3O4, it is one of the oxides of iron.
Magnetite is ferrimagnetic; it is attracted to a magnet and can be
magnetized to become a
permanent magnet itself. It is the most magnetic of all the
naturally-occurring minerals on Earth. Naturally-magnetized pieces of
magnetite, called lodestone, will attract small pieces of iron, which is
how ancient peoples first discovered the property of magnetism. Today it
is mined as iron ore.
Fuel Cells
(energy)
Proton Battery that's researchable. Proton battery combines the best
aspects of hydrogen
Fuel Cells
and battery-based electrical power. The latest version combines a
carbon electrode for solid-state storage of
Hydrogen with a reversible
fuel cell to provide an integrated rechargeable unit. During charging,
protons produced by water splitting in a reversible fuel cell are
conducted through the cell membrane and directly bond with the storage
material with the aid of electrons supplied by the applied voltage,
without forming hydrogen gas. In electricity supply mode this process is
reversed; hydrogen atoms are released from the storage and lose an
electron to become protons once again. These protons then pass back
through the cell membrane where they combine with oxygen and electrons
from the external circuit to re-form water. A major potential advantage of
the proton battery is much higher energy efficiency than conventional
hydrogen systems, making it comparable to lithium ion batteries. The
losses associated with hydrogen gas evolution and splitting back into
protons are eliminated.
Bacteria-Powered Battery on single sheet of paper
Water Battery charging water by means of a mini water bridge.
Memory Effect is an effect observed in
nickel-cadmium and nickel–metal hydride rechargeable batteries that causes
them to hold less charge.
Inexpensive Organic Material Gives Safe Batteries a Longer Life.
Quinones -- an inexpensive, earth-abundant and easily recyclable material
-- to create stable anode composites for any aqueous rechargeable battery.
Quinone represent a class of organic compounds that are formally
"derived from aromatic compounds [such as benzene or naphthalene] by
conversion of an even number of –CH= groups into –C(=O)– groups with any
necessary rearrangement of double bonds", resulting in "a fully conjugated
cyclic dione structure". The class includes some heterocyclic compounds.
The prototypical member of the class is 1,4-benzoquinone or
cyclohexadienedione, often called simply 'quinone' (thus the name of the
class). Other important examples are 1,2-benzoquinone (ortho-quinone),
1,4-naphthoquinone and 9,10-anthraquinone.
Electricity Knowledge
SAM L21 32-bit ARM Microcontroller
Superconducting
Magnetic Energy Storage
Storing Energy in
Magnets.
Vanadium Redox Battery
Vanadium is a hard, silvery grey, ductile, and
malleable transition metal. The elemental metal is rarely found in nature,
but once isolated artificially, the formation of an oxide layer
(passivation) stabilizes the free metal somewhat against further
oxidation.
Battery
Stuff -
Buffalo
Grid
Battery Made from Wood
Nanocellulose and Conductive Polymer
Potato Batteries
Battery Inspired by Vitamins
IV and cellular fluids power Flexible Batteries. Researchers have
engineered bendable batteries that can run on body-inspired liquids such
as normal IV saline solution and cell-culture medium.
Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy
Storage
New Battery Gobbles up Carbon Dioxide.
Lithium-based
battery could make use of greenhouse gas before it ever gets into the
atmosphere. Researchers are also investigating the possibility of
developing a
continuous-operation version of the
process, which would use a steady stream of carbon dioxide under pressure
with the amine material, rather than a preloaded supply the material, thus
allowing it to deliver a steady power output as long as the battery is
supplied with
carbon
dioxide. Ultimately, they hope to make this into an integrated system
that will carry out both the capture of carbon dioxide from a power
plant's emissions stream, and its conversion into an electrochemical
material that could then be used in batteries.
NEI
Corporation -
Saft Batteries -
Cal Charge
Portable Wall Outlet
Battery
University is a free educational website offering hands-on battery
information to engineers, educators, media, students and battery users
alike. The tutorials evaluate the advantages and limitations of battery
chemistries, advise on best battery choice and suggest ways to extend
battery life.
Why do rechargeable batteries measure a higher charge
level in cold temperature when they are actually low on power?
Battery Space specialized in all
kinds of rechargeable batteries.
Diamond-Age of Power Generation as Nuclear Batteries Developed.
Diamond Nuclear-Powered Battery uses nuclear waste to generate electricity
in a nuclear-powered battery. A team of physicists and chemists from the
University of Bristol have grown a man-made diamond that, when placed in a
radioactive field, is able to generate a small electrical current. The
development could solve some of the problems of nuclear waste, clean
electricity generation and battery life.
Superatoms could make for Better Batteries combinations of
atoms that can mimic the
properties of more than one group of
elements of the periodic
table. These superatoms could be used to create new materials.
A new battery concept based on fluoride ions may increase battery
lifespans. Fluoride batteries can have a higher energy density, which
means that they may last longer -- up to eight times longer than batteries
in use todayImagine not having to charge your phone or laptop for weeks.
The key to making the
fluoride batteries
work in a liquid rather than a solid state turned out to be an electrolyte
liquid called bis(2,2,2-trifluoroethyl)ether, or BTFE. This solvent is
what helps keep the fluoride ion stable so that it can shuttle electrons
back and forth in the battery.
Next-Generation Batteries. Engineers build full lithium-ion batteries
with silicon anodes and an alumina layer to protect cathodes from
degrading. By limiting their energy density, the batteries promise
excellent stability for transportation and grid storage use.
Scientists use an industrial laser to turn adhesive tape into a component
for safer, anode-free lithium metal batteries. The idea of using tape
came from previous attempts to produce free-standing films of
laser-induced graphene. Unlike pure polyimide films, the tape produced not
only laser-induced graphene from the polyimide backing but also a
translucent film where the adhesive had been. The layer formed when they
stuck the tape to a copper current collector and lased it multiple times
to quickly raise its temperature to 2,300 Kelvin (3,680 degrees
Fahrenheit). That generated a porous coating composed primarily of silicon
and oxygen, combined with a small amount of carbon in the form of graphene.
Battery Recycling
Battery Recycling is a
recycling activity
that aims to reduce the number of batteries being disposed as
municipal
solid waste. Batteries contain a number of heavy metals and toxic
chemicals and disposing them by the same process as regular trash has
raised concerns over soil contamination and
water pollution.
Closed Loop Recycling.
Battery Recycling -
Battery University -
Battery Solutions
Second Life of Lithium-Ion Batteries. Lithium-ion batteries are best
suited for second-life usage for power storage over other types of
batteries because when their useful life for electric vehicles is over
they still retain 80 percent storage capacity for years. So these
batteries second life performance can be used to Power Laptop Computers,
LED Lights and other low power devices before they degrade.
Repurpose.
New
polymer material may help batteries become self-healing, recyclable.
Engineers have developed a solid polymer-based electrolyte that can
self-heal after damage -- and the material can also be recycled without
the use of harsh chemicals or high temperatures.
Hydrometallurgy is a method for obtaining metals from their ores. It
is a technique within the field of extractive metallurgy involving the use
of aqueous chemistry for the recovery of metals from ores, concentrates,
and recycled or residual materials. Metal chemical processing techniques
that complement hydrometallurgy are pyrometallurgy, vapour metallurgy and
molten salt electrometallurgy. Hydrometallurgy is typically divided into
three general areas: Leaching. Solution concentration and purification.
Metal or metal compound recovery.
Li-Cycle advanced
lithium-ion battery recycling technology.
Faraday Institution
is the UK’s independent institute for electrochemical energy storage
science and technology, supporting research, training, and analysis.
Dismantle is to take something apart or
tear it down into pieces.
Disassemble
is to take something apart.
Making Batteries
From Waste Glass Bottles. UCR researchers are turning glass bottles
into high performance lithium-ion batteries for electric vehicles and
personal electronics.
Rare Earth Elements -
E-Waste
Recycling Nickel-Metal Hydride Batteries
Efficient Perovskite Solar Cells from Recycled Car
Batteries
Recycling Knowledge
Batteries from Scrap Metal. Direct conversion of rusty stainless steel
mesh into stable, low-cost electrodes for potassium-ion batteries.
New 'Blue-Green' solution for Recycling world's Batteries. Materials
scientists demonstrate an environmentally friendly solution to remove
valuable cobalt and lithium metals from spent lithium-ion batteries. The
metals and the eutectic solvent they use to extract them can then be
recycled. The solvent, made of commodity products choline chloride and
ethylene glycol, extracted more than 90 percent of cobalt from powdered
compounds, and a smaller but still significant amount from used batteries.
When you here someone say that
batteries cause to much pollution
ask them what type of battery and what process are they
talking about?
Environmental Websites
Catalyst - Battery Powered Homes (2016) Jonica Newby (youtube 28:41).
Battery-free small devices runs forever. The device harvests energy
from the sun and from the users pressing buttons. Researchers designed the
system hardware and software from the ground up to be energy aware as well
as very energy efficient. They also developed a new technique for storing
the system state in non-volatile memory, minimizing overhead and allowing
quick restoration when power returns. This eliminates the need to press
"save" as seen in traditional platforms.