Vertical Farming - Indoor Agriculture
Vertical Farms are modular and can be adjusted to fit any building.
Vertical Farms can also feed more people then regular farming can because
they grow 75 times more food per square foot then a traditional farm.
Vertical Farms also use no
pesticides and
no fungicides so the
food is healthier and safer. Vertical Farms also
reduce
water consumption because indoor farms use
90 percent less water than outdoor farms, so having a wet or dry season
doesn't matter.
Indoor farming can also control plant
fertilizing
nutrients so the food that is grown is
highly nutritious. Grow a large volume of food in a
relatively small space and use less
water. 6,500 square meters = 900,000-kilo harvest. Vertical Farming
methods could help preserve lands and rain forests and also give time for
other lands to recover and
replenish topsoil and also help reduce
carbon
consumption. Better use of
world’s existing cropland could feed 3 billion more people.
Green Houses.
Food Security -
Food Trucks -
Vending Machines -
Farm to Fridge -
City Farming -
Seeds -
Lights
Controlled Environment Agriculture is a
technology-based approach toward food production. The aim of CEA is to
provide protection and maintain optimal growing conditions throughout the
development of the crop. Production takes place within an enclosed growing
structure such as a greenhouse or building. Plants are often grown using
hydroponic methods in order to supply the
proper amounts of water and
nutrients to the root zone. CEA optimizes the
use of resources such as water, energy, space, capital and labor. CEA
technologies include hydroponics, aquaculture, and aquaponics.
Controllable variables: Temperature (air, nutrient solution, root-zone),
Humidity (%RH), Carbon dioxide (CO2), Light (intensity, spectrum,
interval),
Nutrient concentration (PPM, EC)
Fertilizers, Nutrient pH (acidity).
CEA facilities can range from fully automated glasshouses with computer
controls for watering, lighting and ventilation, to low-tech solutions
such as cloches or plastic film on field grown crops and plastic-covered
tunnels. CEA is used in research so that a specific aspect of production
can be isolated while all other variables remain the same. Tinted glass
could be compared to plain glass in this way during an investigation into
photosynthesis. Another possibility would be an investigation into the use
of supplementary lighting for growing lettuce under a hydroponic system.
Vertical Farming is the practice of producing food in
vertically stacked layers, such as in a skyscraper, used warehouse, or
shipping container. The modern ideas of vertical farming use indoor
farming techniques and controlled-environment agriculture (CEA)
technology, where all environmental factors can be controlled. These
facilities utilize artificial control of light, environmental control
(humidity, temperature, gases...) and fertigation. Some vertical farms use
techniques similar to greenhouses, where natural sunlight can be augmented
with artificial lighting and metal reflectors.
Microclimates
-
Green Houses
Hydroponics -
Mediums
-
Aeroponics -
AquaponicsAquaculture -
Micro Greens -
SproutsLED Grow
Lights
Ski town turns car
park into Vertical Farm for Local Jobs/Food (youtube) -
Vertical
Harvest Jackson produces 100,000 pounds of vegetables a year on a plot
30 feet by 150 feet long; their 1/10th of an acre site grows an annual
amount of produce equivalent to 10 acres of traditional farming. Relying
on hydroponics and moving carousels, the farm uses 90% less water than
conventional farming and doesn’t use any pesticides (only sticky traps).
Biofortification is the idea of
breeding crops to increase their
nutritional value. This can be done either through conventional selective
breeding, or through genetic engineering. Biofortification differs from
ordinary
fortification because it focuses on making plant foods more
nutritious as the plants are growing, rather than having nutrients added
to the foods when they are being processed.
Food Security.
Vertical Growing Resources
Vertical Farm
Growing Crops in Vertical Farms
Vertical Farming
LA Leadership
Gotham Greens
Skyland Vertical Farming (youtube)
Vertical
Forest (youtube) -
Vertical Forest
Plant
Lab
High-Tech Grow Room
Localize Vertical Farm
Forest
Garden (permaculture) -
City
Farming -
Plant
IntelligencePlenty strives
to grow the best
tasting, most
nutritious
produce possible.
App Harvest is
massive indoor farms Year-Round. No Chemical Pesticides, use only recycled
rainwater and distribute it more efficiently, reducing water usage by 90%.
Small Scale Vertical Food Growing
Window Farm is a hydroponic urban gardening system is
an indoor garden that allows for year-round growing in almost any window.
It lets plants use natural light, the climate control of your living
space, and organic “liquid soil.” Uses open-source designs.
Window
Farms -
Window Farms
Upside-Down Tomato Planter
Micro-Gardening
Lighting (growlights)
Vertical Gardening
(youtube)
Plants on
Walls -
Woolly
Pocket
Urban
Gardens Web
Vertical
Farming -
Vertigro
Agrivolution
-
MIT
City Farm -
Grow Food
Herbert is a wall mounted hydroponic vertical farm for your home.
Simple, clean and 40% more efficient.
Small Indoor Growing Systems
Compact Growing Kits for Growing Small Plants and Herbs
Indoors
Biopod - World's First Smart Microhabitat
Seedo Lab Auto Grow
Hydroponics Device.
AVA Byte: Automated Smart Garden
Aero Garden
Chia Herb Garden
Citysens Modular Vertical Garden
EcoQube Air - The World's First Desktop Greenhouse
FogBox
Desktop Aeroponics System that Grows Plants and your fresh
kitchen Herbs with Fog.
mart Garden 3 by Click & Grow
City
Hydro Indoor Growing System -
Microgreens.
Zip Grow Vertical Growing System -
Modular Farming Systems -
Brightagrotech
Grow 53 Plants in 4
Sq Ft with a Garden Tower Vertical Container Garden.
Altifarm is a modular, all-season home farm with self-watering, grow
lights, greenhouse cover and mobility.
Shipping Container Growing Systems
GrowFrame Collapsible Hydroponic Farm that grows food in
empty shipping containers that are shipped around the world
everyday.
Square Roots
Grow uses shipping containers to help local farmers to grow GMO-free,
pesticide-free, real food. $85,000 high-tech growing chambers pre-loaded
with sensors, exotic lighting, precision plumbing for irrigation, vertical
growing towers, a climate control system, and, now, leafy greens. It’s
even possible to design taste.
Vertical Harvest Hydroponics builds enclosed systems out of
transformed shipping containers. Around $200,000, including the
customized freight container and the price to fly it in a C-130
transport plane.
Large Scale Vertical Farming
AeroFarms turned
an abandoned steel mill into the World’s Largest Vertical Farm in Newark,
N.J. - 12 layers of growth on 3½ acres, producing 2 million pounds of food
per year. Growing a plant in about 16 days instead of 30 days in the
field.
Aero Farms Vertical Farming.
WWII Bomb Shelter Becomes Hi-Tech Salad Farm Deep Under London
Combination of Aquaponic and Vertical Growing Technologies.
Green Sense Farms uses 0.1% of the water, land and fertilizer of
an outdoor farm, No pesticides or herbicides, 26 Harvests a
year, 46 pounds of 02 produces daily with tons of CO2 captured
each month.
Mirai Vertical
Farming - Tokyo (youtube)
Plenty (vertical
Farming)
Hydroponics
This computer will grow your food in the future (video and text)
The Open Agriculture Initiative (OpenAG)
Plantagon
productive agriculture solutions in urban environments. Retro-fitting
empty areas and buildings into sustainable food production. Can use office
buildings basements, Residential buildings basements or underground
parking, Factories, Custom made Concepts. Combination building, growing
food on one side of a building and selling food on the other side, along
with an exercise floor, health services, office space, science space,
library, learning center, and so on. A Symbiotic System that combines
municipal infrastructure such as cooling, heating, biogas, waste, water
and energy with food production.
Kennett Township Pennsylvania region
produces
half the mushroom crop in the U.S., known as the Mushroom
Capital of
the World. In a small section of Pennsylvania, indoor farms
are producing more than a million pounds of mushrooms every day.
Kennett Mushrooms
are the largest producer in the world of fresh
mushrooms. Not only
produce, but pack and ship all across North America, with delivery
typically within 48 hours. That’s about a half a billion pounds of
mushrooms a year. And that represents about 50 percent of the U.S.
mushroom crop.
Netherlands Green Houses:
35% of Vegetables are grown on just 20 acres of land, 1% of farm land. 2
million pounds of tomatoes, double of outdoor farming. Growing 350 times
more foof then a regular farm using 1/5 the water. 2nd in the world in
exporting food.
Dutch Greenhouse
experts in greenhouse manufacturing.
Rank
Country Value of Food Exports (US Dollars)
1 United States
$149,122,000,000.00
2 Netherlands $92,845,387,781.00
3 Germany
$86,826,895,514.00
4 Brazil $78,819,969,000.00
Largest Producing Countries of Agricultural Commodities (wiki)
Automated Robotic
Greenhouse in San Carlos, California.
Robots to carefully seed, water,
and care for each plant.
machine learning
algorithms
that will automatically detect plant
diseases.
Space Food for Astronauts - Food Grown in Outer Space
Space
Food is a type of food product created and
processed for consumption
by
astronauts during missions to outer space. The food has specific
requirements of providing balanced nutrition for individuals working in
space, while being easy and safe to store, prepare and consume in the
machinery-filled weightless environments of crewed spacecraft. In recent
years, space food has been used by various nations engaging on space
programs as a way to share and show off their cultural identity and
facilitate intercultural communication. Although astronauts consume a wide
variety of foods and beverages in space, the initial idea from The Man in
Space Committee of the Space Science Board in 1963 was to supply
astronauts with a
formula diet that would supply all the needed
vitamins
and nutrients. Designing food for consumption in space is an often
difficult process. Foods must meet a number of criteria to be considered
fit for space. Firstly, the food must be physiologically appropriate.
Specifically, it must be nutritious, easily digestible, and palatable.
Secondly, the food must be engineered for consumption in a zero gravity
environment. As such, the food must be light, well packaged, fast to serve
and require minimal cleaning up. (Foods that tend to leave crumbs, for
example, are ill-suited for space.) Finally, foods require a minimum of
energy expenditure throughout their use; they must store well, open easily
and leave little waste behind.
Meals Ready to Eat: Expedition 44 Crew Members Sample Leafy Greens Grown on Space Station.
-
Meal Ready to Eat
(survival food).
Engineered Food
for Space Travel. The Human Health and Performance Directorate's
(HH&P) Space Food Systems capability is responsible for evaluating,
producing and packaging food for each mission and developing menus.
Required to be of high quality and meet the nutritional needs of each crew
member while adhering to the requirements of limited storage space,
limited preparation options. Designed containers and packaging appropriate
for long-term storage.
Space Travel.
Advanced Food Technologies Project is to develop, evaluate and deliver
food technologies for human centered spacecraft that will support crews on
missions to the Moon, Mars, and beyond. Safe, nutritious, acceptable, and
varied shelf-stable foods with a shelf life of 3 - 5 years will be
required to support the crew during future exploration missions to the
Moon or Mars. Concurrently, the food system must efficiently balance
appropriate vehicle resources such as mass, volume, water, air, waste,
power, and crew time. One of the objectives during the lunar outpost
missions is to test technologies that can be used during the Mars
missions. This subtopic will concentrate on two specific areas; food
packaging and lunar outpost food preparation and food processing.
Airline Meal is a
meal served to passengers on board a commercial airliner. These meals are
prepared by specialist airline catering services and normally served to
passengers using an airline service trolley.
Growing Food in Space for Space Travel
Plants in Space are plants grown in
outer space typically in
a weightless but pressurized controlled environment in specific space
gardens. In the context of human spaceflight, they can be consumed as food
and/or provide a refreshing atmosphere.
Plants can metabolize carbon
dioxide in the air to produce valuable oxygen, and can help control cabin
humidity. Growing plants in space may provide a psychological benefit to
human spaceflight crews.
Farming in Outer Space -
Modern Farmer Information.
Growing
Plants and Vegetables in a Space Garden
Veggie Plant Growth System Activated on International Space Station
Space cucumbers reveal secrets of plant survival
Bioregenerative Life Support System are artificial
ecosystems consisting of many complex symbiotic relationships among higher
plants, animals, and microorganisms. As the most advanced life support
technology, BLSS can provide a habitation environment similar to the
Earth's biosphere for space missions with extended durations, in deep space, and with multiple crews.
Agriculture is a
Life Support System, which is a group of devices that allow
a human being to survive in space. US government space agency NASA, and
private spaceflight companies use the term environmental control and life
support system or the acronym ECLSS when describing these systems for
their human spaceflight missions. The life support system may supply air,
water and food. It must also maintain the correct body temperature, an
acceptable pressure on the body and deal with the body's waste products.
Shielding against harmful external influences such as radiation and
micro-meteorites may also be necessary. Components of the life support
system are life-critical, and are designed and constructed using safety
engineering techniques.
Leafy Green Astronauts
Space Greens beat the blues | Plants and psychological well-being in space.
Plants may play a key role in maintaining the psychological well-being of
space crews. Space travel can cause sleep disorders, a reduction in
energy, inattentiveness and difficulty in problem-solving, and even memory
loss. It can cause people to be more hostile, act more impulsively and,
despite the danger and excitement, is sometimes boring. Any of these
conditions and problems can lead to dangerous, if not tragic outcomes.
CEAC Lunar Greenhouse (youtube)
-
Full Scale Lunar Greenhouse Prototype (youtube)
Isolated Self Sustaining Living Earth Systems - Biosphere
Biosphere 2 is an
Earth System Science Research
Facility located in
Oracle, Arizona. It has been owned by the University of Arizona since
2011. Its mission is to serve as a center for research, outreach,
teaching, and lifelong learning about Earth, its
living systems, and its
place in the universe. It is a 3.14-acre (1.27-hectare) structure
originally built to be an artificial, materially closed ecological system,
or vivarium. It remains the largest closed system ever created.
Earth is
Biosphere 1.
Inside Biosphere 2:
The World's Largest Earth Science Experiment (youtube)
Eden
Project is a complex is dominated by two huge enclosures consisting of
adjoining
domes that house
thousands of plant species, and each enclosure emulates a natural biome.
The
biomes consist of
hundreds of hexagonal and pentagonal, inflated, plastic cells supported by
steel frames. The largest of the two biomes simulates a rainforest
environment and the second, a Mediterranean environment. The attraction
also has an outside botanical garden which is home to many plants and
wildlife native to
Cornwall and the UK in general; it also has many plants that provide
an important and interesting backstory, for example, those with a
prehistoric heritage.
The Hawaii
Space Exploration Analog and Simulation is an analog habitat for human
spaceflight to Mars. HI-SEAS is located in an
isolated position on
the slopes of the Mauna Loa volcano on the island of Hawaii. The area has
Mars-like features and an elevation of approximately 8,200 feet (2,500 m)
above sea level. The first HI-SEAS study was in 2013 and NASA's Human
Research Program continues to fund and sponsor follow-up studies. The
missions are of extended duration from four months to a year. The purpose
of the detailed research studies is to determine what is required to keep
a
space flight crew happy and healthy during an extended mission to Mars
and while living on Mars. Research into food, crew dynamics, behaviors,
roles and performance, and other aspects of space flight and a mission on
Mars itself is the primary focus. The HI-SEAS researchers also carry out
studies on a variety of other topics as part of their daily activities.
One thing under study by NASA is trying to understand crew dynamics such
as morale, stress management, and how they solve problems as group.
Human
Exploration Research Analog or HERA is a unique
three-story habitat
designed to serve as an analog for isolation, confinement, and remote
conditions in exploration scenarios. Environment: Closed Habitat.
Continually educating yourself
throughout the entire space travel adventure will be the best defense
against going
stir crazy.
Solitude Skills -
Boredom -
Isolation Tank -
Quarantine
Earth System Science is the application of systems science to the
Earth sciences. In particular, it considers
interactions between the Earth's "spheres"—
atmosphere,
hydrosphere, cryosphere, geosphere, pedosphere, biosphere, and, even, the
magnetosphere—as well as the impact of human societies on these
components. At its broadest scale, Earth system science brings together
researchers across both the natural and social sciences, from fields
including
ecology,
economics, geology, glaciology, meteorology, oceanography,
paleontology, sociology, and
space science.
Like the broader subject of systems science, Earth system science assumes
a holistic view of the dynamic interaction between the Earth's spheres and
their many constituent subsystems, the resulting organization and time
evolution of these systems, and their stability or instability. Subsets of
Earth system science include systems
geology and systems
ecology, and many aspects of Earth system science are fundamental to
the subjects of physical geography and climate science.
Systems Science.
Earth Science is a widely embraced term for the fields of
science related to the planet
Earth. It is the branch of science dealing
with the physical constitution of the earth and its
atmosphere. Earth science is the study
of our planet’s physical characteristics, from earthquakes to raindrops,
and floods to fossils. Earth science can be considered to be a branch of
planetary science, but with a much
older history. “Earth science” is a broad term that encompasses four main
branches of study, each of which is further broken down into more
specialized fields.
Systems Geology emphasizes the nature of geology as a system – that
is, as a set of interacting parts that function as a whole. The systems
approach involves study of the linkages or interfaces between the
component objects and processes at all levels of detail in order to gain a
more comprehensive understanding of the solid Earth. A long-term objective
is to provide computational support throughout the cycles of
investigation, integrating observation and experiment with modeling and
theory, each reinforcing the other. The overall complexity suggests that
systems geology must be based on the wider emerging
cyberinfrastructure, and should aim to harmonize geological information
with Earth system science within the context of the e-science vision of a
comprehensive global knowledge system (see Linked Data, Semantic Web).
Systems Ecology is an interdisciplinary field of ecology, a subset of
Earth system science, that takes a holistic approach to the study of
ecological systems, especially ecosystems. Systems
ecology can be seen as
an application of general systems theory to ecology. Central to the
systems ecology approach is the idea that an ecosystem is a complex system
exhibiting emergent properties. Systems ecology focuses on interactions
and transactions within and between biological and ecological systems, and
is especially concerned with the way the functioning of ecosystems can be
influenced by human interventions. It uses and extends concepts from
thermodynamics and develops other macroscopic descriptions of complex
systems.
Systems Biology is the computational and mathematical modeling of
complex biological systems. It is a biology-based interdisciplinary
field of study that focuses on complex interactions within biological
systems, using a holistic approach (holism instead of the more traditional
reductionism) to biological research.
Biological System s a complex
network of
biologically relevant entities. As biological
organization spans several
scales, examples of biological systems are populations of
organisms, or on the
organ- and tissue scale in mammals and other animals, the
circulatory system, the
respiratory system, the
nervous system,
etc. On the micro to the
nanoscopic
scale, examples of biological systems are
cells, organelles,
macromolecular complexes and regulatory pathways. A biological system is
not to be confused with a living system, which is commonly referred to
as life. For further information see e.g. definition of life or synthetic biology.
Food in Space.
Microclimates - Green House
Create
Microclimates in a sterile environment that uses less water than field grown crops.
Bees are allowed in to pollinate, but other bugs are kept out,
eliminating the need for pesticides.
Greenhouse - Cold Frames - Hoop Houses - Cloches - Row Covers - Pop-ups
Greenhouse is a structure with walls and roof made chiefly
of transparent material, such as glass, in which plants requiring
regulated climatic conditions are grown. These structures range in size
from small sheds to industrial-sized buildings. A miniature greenhouse is
known as a cold frame. The interior of a greenhouse exposed to sunlight
becomes significantly warmer than the external ambient temperature,
protecting its contents in cold weather. Many commercial glass greenhouses
or hothouses are high tech production facilities for vegetables or
flowers. The glass greenhouses are filled with equipment including
screening installations, heating, cooling, lighting, and may be controlled
by a computer to optimize conditions for plant growth. Different
techniques are then used to evaluate optimality-degrees and comfort ratio
of greenhouse micro-climate (i.e., air temperature, relative humidity and
vapor pressure deficit) in order to reduce production risk prior to
cultivation of a specific crop.
Dalsem - High-Tech
Greenhouses. (High Quality, High Yield, Short Growing Season).
Desalination
Polytunnel or Hoop House, is a tunnel made of polyethylene,
usually semi-circular, square or elongated in shape. The interior heats up
because incoming solar radiation from the sun warms plants, soil, and
other things inside the building faster than heat can escape the
structure. Air warmed by the heat from hot interior surfaces is retained
in the building by the roof and wall. Temperature, humidity and
ventilation can be controlled by equipment fixed in the polytunnel or by
manual opening and closing of flaps. Polytunnels are mainly used in
temperate regions in similar ways to glass greenhouses and row covers.
Besides the passive solar heating that every polytunnel provides, every
variation of auxiliary heating (from hothouse heating through minimal
heating to unheated houses) is represented in current practice. The
nesting of row covers and low tunnels inside high tunnels is also common.
Caterpillar Tunnel Hoophouse
Bioshelters is a solar greenhouse managed as an indoor
ecosystem. A bioshelter (life-shelter) involves two fields of knowledge
and design. The first is architecture designed to nurture an ecosystem
within. A bioshelter structure uses glazing to contain and protect the
living biology inside, control air exchange and absorb energy. The
building exchanges nutrients, gases and energy with the surrounding
environment, produces crops, and recycles waste organic material into the
soil. Solar energy is stored as heat energy in thermal mass such as
water, stone, masonry, soil and plant biomass. The second is the biology
inside the bioshelter. Earle Barnhart of the New Alchemy Institute has
compared a bioshelter to a contained ecosystem. Solar heat is absorbed and
stored in thermal mass to moderate air temperatures and provide heat for
later use. Water moves from rainfall to fishponds to soil to plants and
finally to water vapor. Year-round habitat is provided for beneficial
insects . Ecological relationships between pests and their predators
reduce the number of pests. Gases are exchanged among the animals,
insects, micro-organisms, soil and plants. Nutrient cycles are developed
between fish, plant & soil. Within the bioshelter are a variety of
microclimates. The south areas receive the most direct sunlight. The east
and west areas can be shaded for a portion of the day. Higher levels in a
growing space will be warmer. A well-designed bioshelter, managed by human
intelligence, can shelter a community of people, food crops, edible fish,
and a diverse ecosystem of plants, animals and soil life.
Bioshelter: Greenhouse (youtube) -
Bioshelter-Greenhouse
Vertical Growing Stations
Greenhouse Evaporative Cooler Build (youtube) - Hot Temperatures
Geothermal Greenhouse: It worked. It REALLY Worked! (youtube) - Cold
Temperatures
98-Page Guide Alaska Greenhouses
Heating a
greenhouse with biomass - wood chips
Biomass - Alaska Energy Authority
Eco Forms -
Grow Tent 5-x-5 -
Grow Tents Box
Exotic Foods (PDF)
-
Five Exotic Greenhouse Crops
Root Zone Cooling and
Heating to achieve greater profitability and stability in crop
production and reduce energy consumption. Plant climate management and the
shortage of water for irrigation.
Greenhouse Garden -
Greenhouse Megastore
Greenhouse (amazon) -
Greenhouse Magazine
Why Purchase a Green House?
Plant Nursery is a building with glass walls and roof used for the
cultivation and exhibition of plants under controlled conditions, a place
where plants are propagated and grown to usable size. They include retail
nurseries which sell to the general public, wholesale nurseries which sell
only to businesses such as other nurseries and to commercial gardeners,
and private nurseries which supply the needs of institutions or private
estates. Nurseries may supply plants for gardens, for agriculture, for
forestry and for conservation biology.
Master Gardening -
Garden
-
Village Farms
Growing Underground -
Zero
Carbon Food
Controlled-Environment Agriculture (wiki)
Cornell
Controlled Environment Agriculture
University of
Arizona Controlled Environment Agriculture (CEA)
How much Land do we
have to grow Food?
Building Kits: Barns, loafing sheds, single slope loafing shed
Hydroponics
Hydroponics is a subset of hydroculture, the method of growing plants
without soil, using mineral nutrient solutions in a water solvent.
Terrestrial plants may be grown with only their roots exposed to the
mineral solution, or the roots may be supported by an inert medium, such
as perlite or gravel. The nutrients in hydroponics can be from fish waste,
duck manure, or normal nutrients.
Hydroculture is
the growing of plants in a soilless medium, or an aquatic based
environment. Plant nutrients are distributed via water.
Aquaponics.
Hydroponics
Water
Systems
Hydroasis
We Grow Hydro
We Grow Store
Hydroponics
Bright
Farms
Sustainable Micro-Farms
Hydroponics Genesis Controller
Hydroponics for Beginners
(youtube)
Hydroponic
Gardening
(youtube)
Hydroponics Europe: Nutriculture Aeroponic System Assembly (youtube)
Using 90% less water, 70% less nutrients and getting 10X yields.
Growing Medium
Growing Medium is a substance through which roots can grow and extract
water and nutrients. Growing medium's can consist of native soils or artificial soils.
Growth Medium.
Coconut Coir Growing Medium
Growing
Mediums
Epic Gardening Coconut Coir
Air Max Aerated Coco Premium Soil Blend, 1.5 cf
PRO-MIX BX MYCORRHIZAE
Coconut Coir Nature’s perfect growing media! Hydroponics
is the science of growing plants without soil-- although the
plants may or may not be suspended in a solid medium such as
gravel, or expanded clay balls.
Soil retains minerals and
nutrients, which "feed" flora, as we all know. Plant roots can't
absorb dirt, however; when water passes through soil, it
dissolves and collects some of the nutrient particles embedded.
This "food" solution is absorbable as a liquid. As you can see,
the soil itself is not an integral part of a plant's feeding
cycle-- it is simply a stabilizer for the roots, and a
convenient filter. Why eliminate the soil? Plants breathe air,
just like humans. School children are taught a simple lesson:
plants take in carbon dioxide, and release oxygen. The entire
plant-- not just leafy material-- contributes to this process.
If not properly maintained, soil can retain too much moisture,
effectively suffocating ("drowning") a plant's root system.
Alternatively, if the soil doesn't contain enough moisture, the
plant will be unable to absorb the nutrients it needs to
survive.
The roots of a hydroponic plant have constant
access to both air and water, and it can be much easier to
maintain that balance since the roots are typically visible.
The average plant needs at least five things to survive.
Air, water, nutrients, minerals, and light. So long as you
can provide these things in plenty, your plants should stay
healthy.
Growing your own food can be a rewarding
experience. If your hydroponic system is indoors, you can grow
food during the off-season too. You'll also save money on
pesticide-free produce and knowing your food wasn't shipped from
a third-world farm that may be supporting bad business
practices, like farm worker abuse
Although not necessary
for the survival of a plant, substrate can help to support a
plant physically and hold it upright, either by securing the
root system, or by outweighing the plant itself. There are many
kinds of substrates commercially available. Check your local
greenhouse or hardware store. Alternatively, there are plenty to
be found outdoors, especially near bodies of water. Even simple
rock can alter the PH of your system. When checking your PH
balance, be sure to check it after it has circulated through
your substrate.
In the moisture-rich conditions
hydroponics typically provide, substrate can be generally
classified into the following categories: sandy, granular, and
pebbled.
Sandy environments consist of particles between
.06 (fine) and 2mm (coarse) in diameter. Even coarse sand
retains a considerable amount of water (except in comparison to
soil), and is not generally considered appropriate for use in a
hydroponic system. If you use a pump, for example, the small
particle size may lead to clogging. However, it is cheap and
readily available, and, when wet, is heavy enough to provide a
reasonable anchor for plant roots. There is some absorbable
nutrient in sand. Typically speaking, the nutrients latent in
sand culture vary widely on the substrate's color and origin.
Most sand contains a large quantity of shell fragments, and
thus has a high calcium content. Black sand usually has a high
magnetite content originating from volcanic rock, known for its
fertility. Orange or yellow sand might be an indicator of a high
iron content. White sand tends to be very high in silica, which
helps build healthy cell walls in plantlife. Diahydro, for
example, is made from diatoms, a type of algae. Sand is
semi-reusable. Sterilizing it between uses can be messy. (Sand
can be sterilized by boiling it in water for extended periods of
time.)
Granular particles range between 2 and 4mm. This
may consist of gravel, or plant mulch. Stone gravel makes a
heavy, non-biodegradable anchor for plant roots, and is highly
recommended for use in hydroponic systems. Stone gravel contains
very little latent plant nutrition, just like sand. There are
several grades of gravel readily available to choose from.
Creek rock and Pea Gravel consist of round, shiny stones.
The smooth shape of these stones allows for great aeration and
root growth, although the drainage may be excessive. Crushed
rock is typically made by crushing large chunks of limestone or
dolomite into smaller pieces. Crushed rock has sharper edges
than creek rock, and tends to interlock better. This tighter
knit makes for higher water retention, although limestone tends
to weigh less. Limestone is a strong alkali. Check your PH, and
balance accordingly.
Stone-based substrate is highly
re-useable. It is considerably less messy than sand to boil for
sterilization. If weight is not a concern (ie: the plants you
grow are not expected to reach considerable heights) you might
consider using a plant mulch, such as peat mulch, cedar
shavings, or coir (coconut peat). Mulches retain a high quantity
of water, but also breathe very well. Mind you, they are also
highly degradable, which can lead to clogged pumps, and wood
shavings often contain aromatic oils which can inhibit plant
growth. Mould and algae growth poses a higher risk when mulches
are involved, but pose one considerable advantage over rocky
substrate: they can be composted and replaced with fresh
material. It does not need to be stored. I wouldn't suggest
re-using 'em, anyway. This is especially convenient if you use
hydroponic systems exclusively to start seeds, or grow during
the off-season.
Pebbled substrate measures between 4 and 64mm. Stone pebbles have the basic characteristics of creek
rock. They are typically smooth, often shiny, and the gaps
between the stones make for low water retention and high
aeration. The shinier the stone, the worse the water retention
will be. A matte or pockmarked surface indicates a porous stone,
which will stay damper, longer, whilst still providing excellent
aeration. Pebbles-- especially the porous variety-- can explode
when heated for sterilization.
You should boil your
substrate between uses to sterilize it. Bacteria love warm, wet
environments and will probably thrive in a hydroponic system.
Algae loves wet and warm (and lukewarm... and cold) systems,
too, and it can look unsightly. If you care about appearances,
boiling your substrate between uses will discourage blossoming,
but if you use grey (recycled from previous use) water you'll be
fighting a losing battle.
Mirabel
Boston Premium Lettuce enriches the water with vitamins and
minerals needed for growth and health of the plants, along with
controlled for optimal results, such as temperature, light,
humidity, etc. This technique requires strict safety procedures
and sanitation. Avoiding the waste of water through reuse,
eliminating the use of herbicides and fungicides and greatly
reduces the use of pesticides. When all these conditions are
combined, the lettuces are more tender, less fibrous than
conventional agricultural methods.
I love farms that can supply
Living lettuce with
its roots intact. Delivering fresh lettuce with roots still attached
lets moisture and nutrients continue to supply nourishment. Grown in a
greenhouse using no pesticides or herbicides, delicious!
Aquaponics
Aquaponics refers to any system that combines conventional
aquaculture (raising
aquatic animals such as snails, fish, crayfish or prawns in tanks)
with hydroponics (
cultivating plants in water) in a symbiotic environment.
In normal aquaculture, excretions from the animals being raised can
accumulate in the water, increasing toxicity. In an aquaponic system,
water from an aquaculture system is fed to a hydroponic system where the
by-products are broken down by Nitrifying bacteria initially into nitrites
and subsequently into nitrates , which are utilized by the plants as
nutrients, and the water is then recirculated back to the aquaculture system.
Hydroponics.
How to Build a Tilapia Pond
Home Aquaponics Kit
Aqua-ponics
Aquaponics
Center for Cooperative Aquaculture Research
EcoQube C - Your Window To Nature a miniature learning tool.
Aqua Biofilter
Floating Wetlands & Floating Islands treats waste water,
stormwater, aquaculture water,
waterways, ponds, dams and lakes.
Bio-Accumulation
Floating Wetlands help boost nitrogen removal in lagoons
Seaweed
Growing Spirulina at Home
Growing
Spirulina at Home. Blue green algae for fish and people too!
(youtube)
"
If you compare spirulina to meat it will take six months to
grow a kilogram of
beef, but spirulina can grow in a week."
Edible Algae
Edible Seaweed are algae that can be eaten and used in the
preparation of food. They typically contain high amounts of fiber and are
a complete
protein. They may belong to one of several groups of
multicellular algae: the red algae, green algae, and brown algae.
Peeponics
- Hydroponics without the Chemicals, Aquaponics without the Fish
(youtube)
Carrageenan are a
family of linear sulphated polysaccharides that are extracted from red
edible seaweeds. They are widely used in the food industry, for their
gelling, thickening, and stabilizing properties. Their main application is
in dairy and meat products, due to their strong binding to food proteins.
There are three main varieties of carrageenan, which differ in their
degree of sulphation. Kappa-carrageenan has one sulphate group per
disaccharide, Iota-carrageenan has two, and Lambda-carrageenan has three.
Seaweed Farms suck carbon dioxide out of the atmosphere and
counteract
ocean acidification.
Seaweed grows at 30 to 60 times the rate of land-based
plants, so it can draw out lots of C02, and grows enough protein
to feed a population of 10 billion people.
Strong Arm Farm sustainably Harvested Sonoma Coast Seaweeds in Sonoma
County, California.
O'Leary Aquaponic Farms
Aquaponic balcony garden with the power of Arduino
Ecoqube desktop ecosystem that uses basil to filter water aquaponics.
American Society for
Horticultural Science -
Farming Knowledge
Improving Ecosystems with Aquatic Plants.
Study shows how to grow aquatic plants in large-scale plant production
systems.
Wetland restoration is critical for improving ecosystem
services, but many aquatic plant nurseries do not have facilities similar
to those typically used for large-scale plant production. This study
attempts to determine what methods would effectively benefit the
large-scale production of aquatic plants as a possible resource of
bolstering the improvement of the ecosystems.
Aquaculture
Aquaculture is the farming of fish, crustaceans, molluscs,
aquatic plants, algae, and other aquatic organisms. Aquaculture involves
cultivating freshwater and saltwater populations under controlled
conditions, and can be contrasted with commercial fishing, which is the
harvesting of wild fish. Mariculture refers to aquaculture practiced in
marine environments and in underwater habitats.
Algaculture is the farming of species of
Algae,
which is an informal term for a large, diverse group of photosynthetic
organisms which are not necessarily closely related, and is thus
polyphyletic. Included organisms range from unicellular genera, such as
Chlorella and the diatoms, to multicellular forms, such as the giant kelp,
a large brown alga which may grow up to 50 m in length. Most are aquatic
and autotrophic and lack many of the distinct cell and tissue types, such
as stomata, xylem, and phloem, which are found in land plants. The largest
and most complex marine algae are called seaweeds, while the most complex
freshwater forms are the Charophyta, a division of green algae which
includes, for example, Spirogyra and the stoneworts.
Microphyte, which are
Microscopic Algae, typically found in freshwater and marine
systems living in both the water column and sediment. They are unicellular
species which exist individually, or in chains or groups. Depending on the
species, their sizes can range from a few micrometers (µm) to a few
hundreds of micrometers. Unlike higher plants, microalgae do not have
roots, stems, or leaves. They are specially adapted to an environment
dominated by viscous forces. Microalgae, capable of performing
photosynthesis, are important for life on earth; they produce
approximately half of the atmospheric oxygen and use simultaneously the
greenhouse gas carbon dioxide to grow photoautotrophically. Microalgae is
the base of the food web and provide energy for all the trophic levels
about it. Microalgae biomass is often measured with chlorophyll a
concentrations and can provide a useful index of potential production. The
standing stock of microphytes is closely related to that of its predators.
Without grazing pressures the standing stock of microphytes dramatically
decreases.
Mike Velings: The Case for Fish Farming (video and text)
Fish Farming Dangers
Fish Farming involves raising fish commercially in tanks or
enclosures, usually for food. It is the principal form of aquaculture,
while other methods may fall under mariculture. A facility that releases
juvenile fish into the wild for recreational fishing or to supplement a
species' natural numbers is generally referred to as a fish hatchery.
Worldwide, the most important fish species used in fish farming are carp,
tilapia, salmon, and catfish.
Vero Blue Farms
onshore, indoor fish farm growing multiple species of fish on land.
Handbook on small-scale freshwater fish farming
Freshwater Fish Farming in Virginia: Selecting the Right Fish to
Raise
Growing Fish in Your Homemade Pond
How to
Build a Fish Pond or how to dig a fishpond (youtube)
How to
Build all Natural Pond without a Liner | Low Cost and
Maintenance | Big Back Yard Water Lake Habitat (youtube)
Open Pond Systems -
Macroalgae and Microalgae
Sea Lettuce a group of edible green algae that is widely
distributed along the coasts of the world's oceans. The type species
within the genus Ulva is Ulva lactuca, lactuca being Latin for "lettuce".
The genus also includes the species previously classified under the genus
Enteromorpha, the former members of which are known under the common name
green nori.
Nori
is the Japanese name for edible seaweed species of the red algae
genus Pyropia, including P. yezoensis and P. tenera.
3D Under Water Vertical Ocean Farming
Seaweed Farming -
Two x Sea -
Sustainable Fishing Resources
Aeroponics
Aeroponics is the process of
growing plants in an air or
mist environment
without the use of soil or an aggregate medium (known as
geoponics). Uses water and fish waste, aeroponics is conducted without a
growing medium. It is sometimes considered a type of hydroponics, since
water is used in aeroponics to transmit nutrients.
No Soil, Grows Faster,
Uses 90% Less Water then outdoor Farms.
Plant
Food (PDF)
Backyard
Aeroponics: self-sustaining farm for Wisconsin cold (youtube)
The
world’s largest aeroponic farm, exploding with food in the
middle of a “food desert” (youtube)
Low
Pressure Aeroponics Tower Build - Part 1 (youtube)
Rockwool Starter Cubes 1.5" (49 Cubes (1/2 Sheet)
Does growing food Hydroponically or Aeroponically
reduce heavy
metals and toxins absorbed by food when it is grown in
soil?
Micro Greens
Micro-Greens is a tiny vegetable green that is used both as a
visual and flavor component or ingredient primarily in fine
dining restaurants. Fine dining chefs use microgreens to enhance
the beauty, taste and freshness of their dishes with their
delicate textures and distinctive flavors. Smaller than “baby
greens,” and harvested later than “sprouts,” microgreens can
provide a variety of leaf flavors, such as sweet and spicy. They
are also known for their various colors and textures. Among
upscale markets, they are now considered a specialty genre of
greens that are good for garnishing salads, soups, plates, and
sandwiches. Edible young greens and grains are produced from
various kinds of vegetables, herbs or other plants. They range
in size from 1” to 3” including the stem and leaves. A
microgreen has a single central stem which has been cut just
above the soil line during harvesting. It has fully developed
cotyledon leaves and usually has one pair of very small,
partially developed true leaves. The average crop-time for most
microgreens is
10–14 days from seeding
to harvest.
How much to Grow?
Sprouting is the practice of germinating seeds to be eaten
raw or cooked. Sprouts can be germinated at home or produced
industrially. They are a prominent ingredient of the raw food
diet and common in Eastern Asian cuisine. Sprouting, like
cooking, reduces anti-nutritional compounds in raw legumes. Raw
lentils for example contain lectins, antinutrional proteins
which can be reduced by sprouting or cooking. Sprouting is also
applied on a large scale to barley as a part of the malting
process. A downside to consuming raw sprouts is that the process
of germinating seeds can also be conducive to harmful bacterial
growth.
Jonathans
Sprouts -
Sprout
Net -
Sprout Man
-
Sprout People
Germination -
Seedling
Shoot consist of stems including their appendages, the
leaves and lateral buds, flowering stems and flower buds. The
new growth from seed germination that grows upward is a shoot
where leaves will develop. In the spring, perennial plant shoots
are the new growth that grows from the ground in herbaceous
plants or the new stem or flower growth that grows on woody
plants. In everyday speech, shoots are often synonymous with
stems. Stems, which are an integral component of shoots, provide
an axis for buds, fruits, and leaves. Young shoots are often
eaten by animals because the fibres in the new growth have not
yet completed secondary cell wall development, making the young
shoots softer and easier to chew and digest. As shoots grow and
age, the cells develop secondary cell walls that have a hard and
tough structure. Some plants (e.g. bracken) produce toxins that
make their shoots inedible or less palatable.
Micro Greens -
Microgreens
Kits and Growing Supplies
Do it Yourself Grow Kits -
In FarmLights (LED'S) -
Super Foods
Eden Works
nutrient-rich Microgreens using
aquaponic
ecosystems that use 95% less water than conventional farms, no pesticides,
and no GMOs. Located in Brooklyn, you’ll find us on the shelf within 24 hours of harvest.
Growing Broccoli Sprouts in a Jar.
Add 2 tablespoons of
broccoli sprouting seeds to a wide-mouthed quart jar.
Cover with a
few inches of filtered water and cap with the
sprouting lid.
Store in a warm, dark place overnight. Can use a
kitchen cabinet for this.
The next morning, drain the liquid off and
rinse with fresh water. Be sure to drain all the water off.
Repeat this
3-4 times a day. Continue to store your seeds in a warm, dark place. After
a few days, the seeds will start to break
open and grow.
Eventually, the sprouts will be an inch or so long and have yellow leaves.
Now you can move the sprouts out into the sunlight.
Continue to rinse
them 3-4 times a day until the leaves are dark green. Now they are ready
to eat!
This whole process will take about a week. Patience is key!
Once they are ready, replace the sprouting lid with a standard mason jar
lid and store in the refrigerator.
How to Grow Organic
Broccoli Sprouts in a Mason Jar (youtube).
Broccoli sprout compound may restore brain chemistry imbalance linked to
schizophrenia a set of chemical imbalances in the brains of people with
schizophrenia related to the chemical glutamate. And they figured out
how to tweak the level using a compound derived from broccoli sprouts.
Films about Growing Micro-Greens
Interviews & Insights: Chris Thoreau - Commercial Microgreens Operation (youtube)
Food Pedalers Microgreens and Wheatgrass, Grown in
Vancouver. Delivered by Bike. Since 2009.
Urban Farmer C.Stone (youtube)
74 Year
Old Discovers the Fountain of Youth in Her Garden looks 40,
John from
Growing
Your Greens with
Annette
Larkins (youtube 1 hour 13 mins.)
How to
Grow a MicroGreens Vegetable Garden Year Round Inside Your Home
(youtube)
Urban
Hydrogreens
How to
Grow Sprouts with Water or in Soil Any Time of the Year at Got
Sprouts (youtube)
Got Sprouts
Red Cabbage Microgreens Lower ‘Bad’ Cholesterol in animal study
Speckled Pea Sprouts
Mung Bean Sprouts -
Sprout
People
Broccoli Sprouts
Broccoli
Sprouts, A Delicious Sprout Variety High in Glucoraphanin
(youtube)
Sulforaphane, a
phytochemical in broccoli sprouts,
improves obesity. Cancer prevention by detoxicating chemical compounds
taken into the body and by enhancing anti-oxidation ability. Known to
exert effects of cancer prevention by activating a transcription factor,
Nrf2 (nuclear factor (erythroid-derived 2)-like 2), which regulates the
balance of oxidation -- reduction in the cell, and by enhancing
anti-oxidation ability of the body and detoxication of chemical compounds
taken into the body. On the other hand, when the balance of oxidation
-- reduction is deteriorated due to hyper nutrition and obesity, it has
been known to be related to pathogenesis of various diseases.
Kanazawa University.
Glucoraphanin enzyme myrosinase transforms glucoraphanin
into raphanin, which is an antibiotic, and into sulforaphane,
which exhibits anti-cancer and antimicrobial properties in
experimental models.
Phytoestrogens
are plant-derived xenoestrogens (
estrogen)
not generated within the
endocrine
system but consumed by eating phytoestrogenic plants. Also called
"dietary estrogens", they are a diverse group of naturally occurring
nonsteroidal plant compounds that, because of their structural similarity
with estradiol (17-β-estradiol), have the ability to cause estrogenic
or/and antiestrogenic effects, by sitting in and blocking receptor sites
against estrogen.
Wheatgrass Jointing Stage
Easy Sprout Sprouter for Home Growing
Urban
Sprouts
-
Growing Mediums
A tablespoon of
seeds can grow a 1/2 pound of sprouts. At the store it's around
$18-$25 a pound, sprouts grown at home is around 0.50 cents a
tray.
Books about Growing Sprouts
Victorio VKP1014 4-Tray Kitchen Seed Sprouter
(amazon)
Growing Herbs
Sprouting Seeds Super Sampler- Organic- 2.5 Lbs of 10 Different Delicious Sprout Seeds: Alfalfa, Mung Bean, Broccoli, Green Lentil, Clover, Buckwheat, Radish, Bean Salad and More
(amazon)
The Sprout House Dozen Organic Sprouting Seeds Sampler Small Quantities of Each Seed Alfalfa, French Lentil, Mung, Daikon Radish, Clover, Green Pea, Garbanzo, Adzuki, Broccoli, Green Lentil, Hard Wheat, Black Sunflower
(amazon)
The Sprout House Organic Sprouting Seeds - Mung, Adzuki, Green Pea, Red Lentil, French Lentil, Green Lentil 1 pound
(amazon)
3 Part Salad Sprout Seed Mix - 1 Lbs - Handy Pantry Brand: Certified Organic Sprouting Seeds: Radish, Broccoli and Alfalfa: Cooking, Food Storage or Delicious Salad Sprouts
(amazon)
-
Nutrition Consultants.
LED Lights - Growing Lights for Indoor Farming
Grow Light is an artificial light source, generally an electric light,
designed to stimulate plant growth by emitting a light appropriate for
photosynthesis. Grow lights are used in applications where there is either
no naturally occurring
light, or where supplemental light is required. For
example, in the winter months when the available hours of daylight may be
insufficient for the desired plant growth, lights are used to extend the
time the plants receive light. If plants do not receive enough light, they
will grow long and spindly.
Migrolight 2.0
Photosynthetic Photon Flux Density (PPFD)
Photosynthetically Active Radiation or PAR, designates the spectral
range (wave band) of solar radiation from 400 to 700 nanometers that
photosynthetic organisms are able to use in the process of photosynthesis.
This spectral region corresponds more or less with the range of light
visible to the human eye. Photons at shorter wavelengths tend to be so
energetic that they can be damaging to cells and tissues, but are mostly
filtered out by the ozone layer in the stratosphere. Photons at longer
wavelengths do not carry enough energy to allow photosynthesis to take
place.
Blue, Red, Far Red LED's
LED Grow Lights 101
LED Facts
LED Lights
for Growing
Advanced
LED Lights
Blue-Red LED 13.8 Watt Square Grow Light Panel (amazon)
LED Lighting Advances in Horticultural Applications boosts
ProductivityLED's
(Home Lighting)
1000
Bulbs -
Green Electrical Supply -
Earth LED
Intelligent Gro fully programmable color channels and
automated 24 day/night schedules for all phases of plant growth
or to replicate any lighting condition, sunrise/sunset, moon
lighting, cloudy days or even make up your own spectrum to suit
your
personal needs. Certain color LED lights can cause food to grow
differently.
Diamond Series LED's
In indoor growing, to grow 2 pounds of potato's or tomato's
require about 1,200 kilowatt-hours of electricity for each
kilogram of edible tissue they produce? 1,200 kilowatt-hours is
the annual electricity consumption of the average American home
refrigerator.
There are 3 factors to
successfully grow crops with artificial light: Light Quality
(recipe), Light Intensity (micromol), Light Duration (hours per day). This
is different for every plant but generally the same species will do good
under the same parameters. For lettuce we found that red/blue/warm white
at a certain ratio seemed to work best for the flavor it gave the lettuce.
The specific promotion of vitamin and carotenoid development such as
lutein and zeaxanthin gives a good taste.
Engineered light to improve health, food. Intentionally controlled
light can help regulate human health and
productivity by
eliciting various hormonal responses. Tailored LED
wavelengths and intensities also can efficiently stimulate plant growth,
alter their shapes and
increase their
nutritional value, opening a new world of scientific and technological
possibilities for indoor farming.
Seeds -
Artificial
Photosynthesis