
Entropy (information theory)

2 shannons of entropy: Information entropy is the log-base-2 of
the number of possible outcomes; with two coins there are four
outcomes, and the entropy is two bits.

In information theory, systems are modeled by a trans-
mitter, channel, and receiver. The transmitter produces
messages that are sent through the channel. The channel
modifies the message in some way. The receiver attempts
to infer which message was sent. In this context, entropy
(more specifically, Shannon entropy) is the expected
value (average) of the information contained in each mes-
sage. 'Messages’ can be modeled by any flow of informa-
tion.
In a more technical sense, there are reasons (explained
below) to define information as the negative of the log-
arithm of the probability distribution. The probability
distribution of the events, coupled with the information
amount of every event, forms a random variable whose
expected value is the average amount of information, or
entropy, generated by this distribution. Units of entropy
are the shannon, nat, or hartley, depending on the base
of the logarithm used to define it, though the shannon is
commonly referred to as a bit.
The logarithm of the probability distribution is useful as
a measure of entropy because it is additive for indepen-
dent sources. For instance, the entropy of a coin toss is
1 shannon, whereas of m tosses it is m shannons. Gen-
erally, you need log2(n) bits to represent a variable that
can take one of n values if n is a power of 2. If these
values are equally probable, the entropy (in shannons) is
equal to the number of bits. Equality between number
of bits and shannons holds only while all outcomes are
equally probable. If one of the events is more probable
than others, observation of that event is less informative.
Conversely, rarer events provide more information when
observed. Since observation of less probable events oc-
curs more rarely, the net effect is that the entropy (thought
of as average information) received from non-uniformly

distributed data is less than log2(n). Entropy is zero when
one outcome is certain. Shannon entropy quantifies all
these considerations exactly when a probability distribu-
tion of the source is known. The meaning of the events
observed (the meaning of messages) does not matter in
the definition of entropy. Entropy only takes into account
the probability of observing a specific event, so the infor-
mation it encapsulates is information about the underly-
ing probability distribution, not the meaning of the events
themselves.
Generally, entropy refers to disorder or uncertainty.
Shannon entropy was introduced by Claude E. Shannon
in his 1948 paper "A Mathematical Theory of Commu-
nication".[1] Shannon entropy provides an absolute limit
on the best possible average length of lossless encoding
or compression of an information source. Rényi entropy
generalizes Shannon entropy.

1 Introduction

Entropy is a measure of unpredictability of information
content. To get an informal, intuitive understanding of
the connection between these three English terms, con-
sider the example of a poll on some political issue. Usu-
ally, such polls happen because the outcome of the poll
isn't already known. In other words, the outcome of the
poll is relatively unpredictable, and actually performing
the poll and learning the results gives some new informa-
tion; these are just different ways of saying that the en-
tropy of the poll results is large. Now, consider the case
that the same poll is performed a second time shortly af-
ter the first poll. Since the result of the first poll is already
known, the outcome of the second poll can be predicted
well and the results should not contain much new infor-
mation; in this case the entropy of the second poll result
is small relative to the first.
Now consider the example of a coin toss. When the coin
is fair, that is, when the probability of heads is the same as
the probability of tails, then the entropy of the coin toss
is as high as it could be. This is because there is no way
to predict the outcome of the coin toss ahead of time—
the best we can do is predict that the coin will come up
heads, and our prediction will be correct with probability
1/2. Such a coin toss has one bit of entropy since there are
two possible outcomes that occur with equal probability,
and learning the actual outcome contains one bit of infor-
mation. Contrarily, a coin toss with a coin that has two
heads and no tails has zero entropy since the coin will al-
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2 3 EXAMPLE

ways come up heads, and the outcome can be predicted
perfectly.
English text has fairly low entropy. In other words, it is
fairly predictable. Even if we don't know exactly what
is going to come next, we can be fairly certain that, for
example, there will be many more e’s than z’s, that the
combination 'qu' will be much more common than any
other combinationwith a 'q' in it, and that the combination
'th' will be more common than 'z', 'q', or 'qu'. After the
first few letters one can often guess the rest of the word.
English text has between 0.6 and 1.3 bits of entropy for
each character of message.[2][3]

The Chinese version of Wikipedia points out that Chi-
nese characters have a much higher entropy than English.
Each character of Chinese has about -log2(1/2500)=11.3
bits, almost three times higher than English. However,
the discussion could bemuchmore sophisticated than this
simple calculation because in English the usage of words,
not only characters, and redundancy factors could be con-
sidered.
If a compression scheme is lossless—that is, you
can always recover the entire original message by
decompressing—then a compressed message has the
same quantity of information as the original, but com-
municated in fewer characters. That is, it has more infor-
mation, or a higher entropy, per character. This means
a compressed message has less redundancy. Roughly
speaking, Shannon’s source coding theorem says that a
lossless compression scheme cannot compress messages,
on average, to have more than one bit of information per
bit of message, but that any value less than one bit of in-
formation per bit of message can be attained by employ-
ing a suitable coding scheme. The entropy of a message
per bit multiplied by the length of that message is a mea-
sure of howmuch total information the message contains.
Shannon’s theorem also implies that no lossless compres-
sion scheme can shorten all messages. If some messages
come out shorter, at least onemust come out longer due to
the pigeonhole principle. In practical use, this is generally
not a problem, because we are usually only interested in
compressing certain types of messages, for example En-
glish documents as opposed to gibberish text, or digital
photographs rather than noise, and it is unimportant if a
compression algorithm makes some unlikely or uninter-
esting sequences larger. However, the problem can still
arise even in everyday use when applying a compression
algorithm to already compressed data: for example, mak-
ing a ZIP file of music that is already in the FLAC audio
format is unlikely to achieve much extra saving in space.

2 Definition

Named after Boltzmann’s Η-theorem, Shannon defined
the entropy Η (Greek letter Eta) of a discrete ran-
dom variable X with possible values {x1, …, xn} and

probability mass function P(X) as:

H(X) = E[I(X)] = E[− ln(P(X))].

Here E is the expected value operator, and I is the
information content ofX.[4][5] I(X) is itself a random vari-
able.
The entropy can explicitly be written as

H(X) =
∑
i

P(xi) I(xi) = −
∑
i

P(xi) logb P(xi),

where b is the base of the logarithm used. Common val-
ues of b are 2, Euler’s number e, and 10, and the unit of
entropy is shannon for b = 2, nat for b = e, and hartley
for b = 10.[6] When b = 2, the units of entropy are also
commonly referred to as bits.
In the case of p(xi) = 0 for some i, the value of the cor-
responding summand 0 logb(0) is taken to be 0, which is
consistent with the limit:

lim
p→0+

p log(p) = 0.

When the distribution is continuous rather than discrete,
the sum is replaced with an integral as

H(X) =

∫
P(x) I(x) dx = −

∫
P(x) logb P(x) dx,

where P(x) represents a probability density function.
One may also define the conditional entropy of two events
X and Y taking values xi and yj respectively, as

H(X|Y ) =
∑
i,j

p(xi, yj) log
p(yj)

p(xi, yj)

where p(xi, yj) is the probability that X = xi and Y = yj.
This quantity should be understood as the amount of ran-
domness in the random variable X given the event Y.

3 Example

Main article: Binary entropy function
Main article: Bernoulli process

Consider tossing a coin with known, not necessarily fair,
probabilities of coming up heads or tails; this is known as
the Bernoulli process.
The entropy of the unknown result of the next toss of the
coin is maximized if the coin is fair (that is, if heads and
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Entropy Η(X) (i.e. the expected surprisal) of a coin flip, mea-
sured in shannons, graphed versus the fairness of the coin Pr(X
= 1), where X = 1 represents a result of heads.
Note that the maximum of the graph depends on the distribution.
Here, the entropy is at most 1 shannon, and to communicate the
outcome of a fair coin flip (2 possible values) will require an av-
erage of at most 1 bit. The result of a fair die (6 possible values)
would require on average log26 bits.

tails both have equal probability 1/2). This is the situation
of maximum uncertainty as it is most difficult to predict
the outcome of the next toss; the result of each toss of the
coin delivers one full bit of information.
However, if we know the coin is not fair, but comes up
heads or tails with probabilities p and q, where p ≠ q, then
there is less uncertainty. Every time it is tossed, one side
is more likely to come up than the other. The reduced
uncertainty is quantified in a lower entropy: on average
each toss of the coin delivers less than one full bit of in-
formation.
The extreme case is that of a double-headed coin that
never comes up tails, or a double-tailed coin that never re-
sults in a head. Then there is no uncertainty. The entropy
is zero: each toss of the coin delivers no new information
as the outcome of each coin toss is always certain. In this
respect, entropy can be normalized by dividing it by in-
formation length. This ratio is called metric entropy and
is a measure of the randomness of the information.

4 Rationale

To understand the meaning of ∑ pi log(1/pi), at first, try
to define an information function, I, in terms of an event
i with probability pi. How much information is acquired
due to the observation of event i? Shannon’s solution fol-
lows from the fundamental properties of information:[7]

1. I(p) ≥ 0 – information is a non-negative quantity

2. I(1) = 0 – events that always occur do not commu-
nicate information

3. I(p1 p2) = I(p1) + I(p2) – information due to inde-
pendent events is additive

The last is a crucial property. It states that joint probabil-
ity communicates as much information as two individual
events separately. Particularly, if the first event can yield
one of n equiprobable outcomes and another has one of
m equiprobable outcomes then there aremn possible out-
comes of the joint event. This means that if log2(n) bits
are needed to encode the first value and log2(m) to encode
the second, one needs log2(mn) = log2(m) + log2(n) to en-
code both. Shannon discovered that the proper choice of
function to quantify information, preserving this additiv-
ity, is logarithmic, i.e.,

I(p) = log(1/p)

The base of the logarithm can be any fixed real number
greater than 1. The different units of information (bits
for log2, trits for log3, nats for the natural logarithm ln
and so on) are just constant multiples of each other. (In
contrast, the entropy would be negative if the base of the
logarithm were less than 1.) For instance, in case of a fair
coin toss, heads provides log2(2) = 1 bit of information,
which is approximately 0.693 nats or 0.631 trits. Because
of additivity, n tosses provide n bits of information, which
is approximately 0.693n nats or 0.631n trits.
Now, suppose we have a distribution where event i can
happen with probability pi. Suppose we have sampled it
N times and outcome i was, accordingly, seen ni = N pi
times. The total amount of information we have received
is

∑
i

niI(pi) =
∑

Npi log(1/pi)

The average amount of information that we receive with
every event is therefore

∑
i

pi log
1

pi
.

5 Aspects

5.1 Relationship to thermodynamic en-
tropy

Main article: Entropy in thermodynamics and informa-
tion theory
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The inspiration for adopting the word entropy in infor-
mation theory came from the close resemblance between
Shannon’s formula and very similar known formulae from
statistical mechanics.
In statistical thermodynamics the most general formula
for the thermodynamic entropy S of a thermodynamic
system is the Gibbs entropy,

S = −kB
∑

pi ln pi

where kB is the Boltzmann constant, and pi is the proba-
bility of a microstate. The Gibbs entropy was defined by
J. Willard Gibbs in 1878 after earlier work by Boltzmann
(1872).[8]

The Gibbs entropy translates over almost unchanged into
the world of quantum physics to give the von Neumann
entropy, introduced by John von Neumann in 1927,

S = −kB Tr(ρ ln ρ)

where ρ is the density matrix of the quantum mechanical
system and Tr is the trace.
At an everyday practical level the links between informa-
tion entropy and thermodynamic entropy are not evident.
Physicists and chemists are apt to be more interested
in changes in entropy as a system spontaneously evolves
away from its initial conditions, in accordance with the
second law of thermodynamics, rather than an unchang-
ing probability distribution. And, as the minuteness of
Boltzmann’s constant kB indicates, the changes in S / kB
for even tiny amounts of substances in chemical and phys-
ical processes represent amounts of entropy that are ex-
tremely large compared to anything in data compression
or signal processing. Furthermore, in classical thermo-
dynamics the entropy is defined in terms of macroscopic
measurements and makes no reference to any probability
distribution, which is central to the definition of informa-
tion entropy.
At a multidisciplinary level, however, connections can
be made between thermodynamic and informational en-
tropy, although it took many years in the development
of the theories of statistical mechanics and information
theory to make the relationship fully apparent. In fact,
in the view of Jaynes (1957), thermodynamic entropy,
as explained by statistical mechanics, should be seen as
an application of Shannon’s information theory: the ther-
modynamic entropy is interpreted as being proportional
to the amount of further Shannon information needed to
define the detailed microscopic state of the system, that
remains uncommunicated by a description solely in terms
of the macroscopic variables of classical thermodynam-
ics, with the constant of proportionality being just the
Boltzmann constant. For example, adding heat to a sys-
tem increases its thermodynamic entropy because it in-
creases the number of possible microscopic states of the

system that are consistent with the measurable values of
its macroscopic variables, thus making any complete state
description longer. (See article: maximum entropy ther-
modynamics). Maxwell’s demon can (hypothetically) re-
duce the thermodynamic entropy of a system by using in-
formation about the states of individual molecules; but,
as Landauer (from 1961) and co-workers have shown,
to function the demon himself must increase thermo-
dynamic entropy in the process, by at least the amount
of Shannon information he proposes to first acquire and
store; and so the total thermodynamic entropy does not
decrease (which resolves the paradox). Landauer’s prin-
ciple imposes a lower bound on the amount of heat a com-
puter must generate to process a given amount of infor-
mation, though modern computers are far less efficient.

5.2 Entropy as information content

Main article: Shannon’s source coding theorem

Entropy is defined in the context of a probabilistic model.
Independent fair coin flips have an entropy of 1 bit per
flip. A source that always generates a long string of B’s
has an entropy of 0, since the next character will always
be a 'B'.
The entropy rate of a data source means the average num-
ber of bits per symbol needed to encode it. Shannon’s
experiments with human predictors show an information
rate between 0.6 and 1.3 bits per character in English;[9]
the PPM compression algorithm can achieve a compres-
sion ratio of 1.5 bits per character in English text.
From the preceding example, note the following points:

1. The amount of entropy is not always an integer num-
ber of bits.

2. Many data bits may not convey information. For
example, data structures often store information re-
dundantly, or have identical sections regardless of
the information in the data structure.

Shannon’s definition of entropy, when applied to an infor-
mation source, can determine the minimum channel ca-
pacity required to reliably transmit the source as encoded
binary digits (see caveat below in italics). The formula
can be derived by calculating the mathematical expec-
tation of the amount of information contained in a digit
from the information source. See also Shannon-Hartley
theorem.
Shannon’s entropy measures the information contained
in a message as opposed to the portion of the message
that is determined (or predictable). Examples of the lat-
ter include redundancy in language structure or statistical
properties relating to the occurrence frequencies of letter
or word pairs, triplets etc. See Markov chain.

https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_thermodynamics
https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Gibbs_entropy
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/J._Willard_Gibbs
https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Quantum_physics
https://en.wikipedia.org/wiki/Von_Neumann_entropy
https://en.wikipedia.org/wiki/Von_Neumann_entropy
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Density_matrix
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Boltzmann%2527s_constant
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Edwin_Thompson_Jaynes
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Maximum_entropy_thermodynamics
https://en.wikipedia.org/wiki/Maximum_entropy_thermodynamics
https://en.wikipedia.org/wiki/Maxwell%2527s_demon
https://en.wikipedia.org/wiki/Rolf_Landauer
https://en.wikipedia.org/wiki/Landauer%2527s_principle
https://en.wikipedia.org/wiki/Landauer%2527s_principle
https://en.wikipedia.org/wiki/Shannon%2527s_source_coding_theorem
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/PPM_compression_algorithm
https://en.wikipedia.org/wiki/Shannon-Hartley_theorem
https://en.wikipedia.org/wiki/Shannon-Hartley_theorem
https://en.wikipedia.org/wiki/Markov_chain


5.6 Limitations of entropy as information content 5

5.3 Entropy as a measure of diversity

Main article: Diversity index

Entropy is one of several ways to measure diversity.
Specifically, Shannon entropy is the logarithm of 1D, the
true diversity index with parameter equal to 1.

5.4 Data compression

Main article: Data compression

Entropy effectively bounds the performance of the
strongest lossless compression possible, which can be re-
alized in theory by using the typical set or in practice
using Huffman, Lempel–Ziv or arithmetic coding. The
performance of existing data compression algorithms is
often used as a rough estimate of the entropy of a block
of data.[10][11] See also Kolmogorov complexity. In prac-
tice, compression algorithms deliberately include some
judicious redundancy in the form of checksums to pro-
tect against errors.

5.5 World’s technological capacity to store
and communicate information

A 2011 study in Science estimates the world’s technolog-
ical capacity to store and communicate optimally com-
pressed information normalized on the most effective
compression algorithms available in the year 2007, there-
fore estimating the entropy of the technologically avail-
able sources.[12]

The authors estimate humankind technological capac-
ity to store information (fully entropically compressed)
in 1986 and again in 2007. They break the infor-
mation into three categories—to store information on
a medium, to receive information through a one-way
broadcast networks, or to exchange information through
two-way telecommunication networks.[12]

5.6 Limitations of entropy as information
content

There are a number of entropy-related concepts that
mathematically quantify information content in some
way:

• the self-information of an individual message or
symbol taken from a given probability distribution,

• the entropy of a given probability distribution of
messages or symbols, and

• the entropy rate of a stochastic process.

(The “rate of self-information” can also be defined for
a particular sequence of messages or symbols generated
by a given stochastic process: this will always be equal
to the entropy rate in the case of a stationary process.)
Other quantities of information are also used to compare
or relate different sources of information.
It is important not to confuse the above concepts. Often it
is only clear from context which one is meant. For exam-
ple, when someone says that the “entropy” of the English
language is about 1 bit per character, they are actually
modeling the English language as a stochastic process and
talking about its entropy rate. Shannon himself used the
term in this way.[3]

Although entropy is often used as a characterization of
the information content of a data source, this information
content is not absolute: it depends crucially on the prob-
abilistic model. A source that always generates the same
symbol has an entropy rate of 0, but the definition of what
a symbol is depends on the alphabet. Consider a source
that produces the string ABABABABAB… in which A
is always followed by B and vice versa. If the probabilis-
tic model considers individual letters as independent, the
entropy rate of the sequence is 1 bit per character. But
if the sequence is considered as “AB AB AB AB AB…"
with symbols as two-character blocks, then the entropy
rate is 0 bits per character.
However, if we use very large blocks, then the estimate
of per-character entropy rate may become artificially low.
This is because in reality, the probability distribution of
the sequence is not knowable exactly; it is only an esti-
mate. For example, suppose one considers the text of ev-
ery book ever published as a sequence, with each symbol
being the text of a complete book. If there are N pub-
lished books, and each book is only published once, the
estimate of the probability of each book is 1/N, and the
entropy (in bits) is −log2(1/N) = log2(N). As a practical
code, this corresponds to assigning each book a unique
identifier and using it in place of the text of the book
whenever one wants to refer to the book. This is enor-
mously useful for talking about books, but it is not so
useful for characterizing the information content of an
individual book, or of language in general: it is not pos-
sible to reconstruct the book from its identifier without
knowing the probability distribution, that is, the com-
plete text of all the books. The key idea is that the com-
plexity of the probabilistic model must be considered.
Kolmogorov complexity is a theoretical generalization of
this idea that allows the consideration of the informa-
tion content of a sequence independent of any particular
probability model; it considers the shortest program for
a universal computer that outputs the sequence. A code
that achieves the entropy rate of a sequence for a given
model, plus the codebook (i.e. the probabilistic model),
is one such program, but it may not be the shortest.
For example, the Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13,
…. Treating the sequence as a message and each number
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as a symbol, there are almost as many symbols as there are
characters in the message, giving an entropy of approxi-
mately log2(n). So the first 128 symbols of the Fibonacci
sequence has an entropy of approximately 7 bits/symbol.
However, the sequence can be expressed using a formula
[F(n) = F(n−1) + F(n−2) for n = 3, 4, 5, …, F(1) =1,
F(2) = 1] and this formula has a much lower entropy and
applies to any length of the Fibonacci sequence.

5.7 Limitations of entropy as a measure of
unpredictability

In cryptanalysis, entropy is often roughly used as a mea-
sure of the unpredictability of a cryptographic key. For
example, a 128-bit key that is randomly generated has
128 bits of entropy. It takes (on average) 2128−1 guesses
to break by brute force. If the key’s first digit is 0, and the
others random, then the entropy is 127 bits, and it takes
(on average) 2127−1 guesses.
However, entropy fails to capture the number of
guesses required if the possible keys are not of equal
probability.[13][14] If the key is half the time “password”
and half the time a true random 128-bit key, then the en-
tropy is approximately 65 bits. Yet half the time the key
may be guessed on the first try, if your first guess is “pass-
word”, and on average, it takes around 2126 guesses (not
265−1 ) to break this password.
Similarly, consider a 1000000-digit binary one-time pad.
If the pad has 1000000 bits of entropy, it is perfect. If the
pad has 999999 bits of entropy, evenly distributed (each
individual bit of the pad having 0.999999 bits of entropy)
it may still be considered very good. But if the pad has
999999 bits of entropy, where the first digit is fixed and
the remaining 999999 digits are perfectly random, then
the first digit of the ciphertext will not be encrypted at
all.

5.8 Data as a Markov process

A common way to define entropy for text is based on the
Markov model of text. For an order-0 source (each char-
acter is selected independent of the last characters), the
binary entropy is:

H(S) = −
∑

pi log2 pi,

where pi is the probability of i. For a first-order Markov
source (one in which the probability of selecting a charac-
ter is dependent only on the immediately preceding char-
acter), the entropy rate is:

H(S) = −
∑

i pi
∑

j pi(j) log2 pi(j),

where i is a state (certain preceding characters) and pi(j)
is the probability of j given i as the previous character.

For a second order Markov source, the entropy rate is

H(S) = −
∑
i

pi
∑
j

pi(j)
∑
k

pi,j(k) log2 pi,j(k).

5.9 b-ary entropy

In general the b-ary entropy of a source S = (S, P) with
source alphabet S = {a1, …, an} and discrete probability
distribution P = {p1, …, pn} where pi is the probability
of ai (say pi = p(ai)) is defined by:

Hb(S) = −
n∑

i=1

pi logb pi,

Note: the b in "b-ary entropy” is the number of different
symbols of the ideal alphabet used as a standard yard-
stick to measure source alphabets. In information theory,
two symbols are necessary and sufficient for an alphabet
to encode information. Therefore, the default is to let b
= 2 (“binary entropy”). Thus, the entropy of the source
alphabet, with its given empiric probability distribution,
is a number equal to the number (possibly fractional) of
symbols of the “ideal alphabet”, with an optimal probabil-
ity distribution, necessary to encode for each symbol of
the source alphabet. Also note that “optimal probability
distribution” here means a uniform distribution: a source
alphabet with n symbols has the highest possible entropy
(for an alphabet with n symbols) when the probability dis-
tribution of the alphabet is uniform. This optimal entropy
turns out to be logb(n).

6 Efficiency

A source alphabet with non-uniform distribution will
have less entropy than if those symbols had uniform dis-
tribution (i.e. the “optimized alphabet”). This deficiency
in entropy can be expressed as a ratio called efficiency:

η(X) = −
∑n

i=1
p(xi) logb(p(xi))

logb(n)

Efficiency has utility in quantifying the effective use of
a communications channel. This formulation is also re-
ferred to as the normalized entropy, as the entropy is di-
vided by the maximum entropy logb(n) .

7 Characterization

Shannon entropy is characterized by a small number of
criteria, listed below. Any definition of entropy satisfying
these assumptions has the form

https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Markov_model
https://en.wikipedia.org/wiki/Markov_source
https://en.wikipedia.org/wiki/Markov_source
https://en.wikipedia.org/wiki/Entropy_rate
https://en.wikipedia.org/wiki/Source_alphabet
https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Necessary_and_sufficient
https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
https://en.wikipedia.org/wiki/Characterization_(mathematics)
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−K
n∑

i=1

pi log(pi)

where K is a constant corresponding to a choice of mea-
surement units.
In the following, pi = Pr(X = xi) and Ηn(p1, …, pn) =
Η(X).

7.1 Continuity

The measure should be continuous, so that changing the
values of the probabilities by a very small amount should
only change the entropy by a small amount.

7.2 Symmetry

The measure should be unchanged if the outcomes xi are
re-ordered.

Hn (p1, p2, . . .) = Hn (p2, p1, . . .)

7.3 Maximum

The measure should be maximal if all the outcomes are
equally likely (uncertainty is highest when all possible
events are equiprobable).

Hn(p1, . . . , pn) ≤ Hn

(
1

n
, . . . ,

1

n

)
= logb(n).

For equiprobable events the entropy should increase with
the number of outcomes.

Hn

(
1

n
, . . . ,

1

n︸ ︷︷ ︸
n

)
= logb(n) < logb(n+1) = Hn+1

(
1

n+ 1
, . . . ,

1

n+ 1︸ ︷︷ ︸
n+1

)
.

7.4 Additivity

The amount of entropy should be independent of how the
process is regarded as being divided into parts.
This last functional relationship characterizes the entropy
of a systemwith sub-systems. It demands that the entropy
of a system can be calculated from the entropies of its
sub-systems if the interactions between the sub-systems
are known.
Given an ensemble of n uniformly distributed elements
that are divided into k boxes (sub-systems) with b1, …, bk
elements each, the entropy of the whole ensemble should

be equal to the sum of the entropy of the system of boxes
and the individual entropies of the boxes, each weighted
with the probability of being in that particular box.
For positive integers bi where b1 + … + bk = n,

Hn

(
1

n
, . . . ,

1

n

)
= Hk

(
b1
n
, . . . ,

bk
n

)
+

k∑
i=1

bi
n
Hbi

(
1

bi
, . . . ,

1

bi

)
.

Choosing k = n, b1 = … = bn = 1 this implies that the
entropy of a certain outcome is zero: Η1(1) = 0. This
implies that the efficiency of a source alphabet with n
symbols can be defined simply as being equal to its n-ary
entropy. See also Redundancy (information theory).

8 Further properties

The Shannon entropy satisfies the following properties,
for some of which it is useful to interpret entropy as
the amount of information learned (or uncertainty elimi-
nated) by revealing the value of a random variable X:

• Adding or removing an event with probability zero
does not contribute to the entropy:

Hn+1(p1, . . . , pn, 0) = Hn(p1, . . . , pn)

• It can be confirmed using the Jensen inequality that

H(X) = E
[
logb

(
1

p(X)

)]
≤ logb

(
E
[

1

p(X)

])
= logb(n)

This maximal entropy of logb(n) is effectively
attained by a source alphabet having a uniform
probability distribution: uncertainty is maxi-
mal when all possible events are equiprobable.

• The entropy or the amount of information revealed
by evaluating (X,Y) (that is, evaluating X and Y si-
multaneously) is equal to the information revealed
by conducting two consecutive experiments: first
evaluating the value of Y, then revealing the value
of X given that you know the value of Y. This may
be written as

H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).

• If Y = f(X) where f is deterministic, then Η(f(X).
Applying the previous formula to Η(X, f(X)) yields

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Positive_integers
https://en.wikipedia.org/wiki/Redundancy_(information_theory)
https://en.wikipedia.org/wiki/Jensen_inequality
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H(X) + H(f(X)|X) = H(f(X)) + H(X|f(X)),

so Η(f(X)) ≤ Η(X), thus the entropy of a vari-
able can only decrease when the latter is passed
through a deterministic function.

• If X and Y are two independent experiments, then
knowing the value of Y doesn't influence our knowl-
edge of the value of X (since the two don't influence
each other by independence):

H(X|Y ) = H(X).

• The entropy of two simultaneous events is no more
than the sum of the entropies of each individual
event, and are equal if the two events are indepen-
dent. More specifically, if X and Y are two random
variables on the same probability space, and (X, Y)
denotes their Cartesian product, then

H(X,Y ) ≤ H(X) + H(Y ).

Proving this mathematically follows easily from the pre-
vious two properties of entropy.

9 Extending discrete entropy to the
continuous case

9.1 Differential entropy

Main article: Differential entropy

The Shannon entropy is restricted to random variables
taking discrete values. The corresponding formula for
a continuous random variable with probability density
function f(x) with finite or infinite support X on the real
line is defined by analogy, using the above form of the
entropy as an expectation:

h[f ] = E[− ln(f(x))] = −
∫
X
f(x) ln(f(x)) dx.

This formula is usually referred to as the continuous en-
tropy, or differential entropy. A precursor of the contin-
uous entropy h[f] is the expression for the functional Η
in the Η-theorem of Boltzmann.
Although the analogy between both functions is sugges-
tive, the following question must be set: is the differen-
tial entropy a valid extension of the Shannon discrete en-
tropy? Differential entropy lacks a number of properties

that the Shannon discrete entropy has – it can even be neg-
ative – and thus corrections have been suggested, notably
limiting density of discrete points.
To answer this question, we must establish a connection
between the two functions:
We wish to obtain a generally finite measure as the bin
size goes to zero. In the discrete case, the bin size is the
(implicit) width of each of the n (finite or infinite) bins
whose probabilities are denoted by pn. As we general-
ize to the continuous domain, we must make this width
explicit.
To do this, start with a continuous function f discretized
into bins of size ∆ . By the mean-value theorem there
exists a value xi in each bin such that

f(xi)∆ =

∫ (i+1)∆

i∆

f(x) dx

and thus the integral of the function f can be approxi-
mated (in the Riemannian sense) by

∫ ∞

−∞
f(x) dx = lim

∆→0

∞∑
i=−∞

f(xi)∆

where this limit and “bin size goes to zero” are equivalent.
We will denote

H∆ := −
∞∑

i=−∞
f(xi)∆ log (f(xi)∆)

and expanding the logarithm, we have

H∆ = −
∞∑

i=−∞
f(xi)∆ log(f(xi))−

∞∑
i=−∞

f(xi)∆ log(∆).

As Δ → 0, we have

∞∑
i=−∞

f(xi)∆ →
∫ ∞

−∞
f(x) dx = 1

∞∑
i=−∞

f(xi)∆ log(f(xi)) →
∫ ∞

−∞
f(x) log f(x) dx.

But note that log(Δ) → −∞ as Δ→ 0, therefore we need a
special definition of the differential or continuous entropy:

h[f ] = lim
∆→0

(
H∆ + log∆

)
= −

∫ ∞

−∞
f(x) log f(x) dx,

which is, as said before, referred to as the differential
entropy. This means that the differential entropy is not a

https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Probability_density_function
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limit of the Shannon entropy for n→∞. Rather, it differs
from the limit of the Shannon entropy by an infinite offset.
It turns out as a result that, unlike the Shannon entropy,
the differential entropy is not in general a good measure
of uncertainty or information. For example, the differen-
tial entropy can be negative; also it is not invariant under
continuous co-ordinate transformations.

9.2 Relative entropy

Main article: Generalized relative entropy

Another useful measure of entropy that works equally
well in the discrete and the continuous case is the relative
entropy of a distribution. It is defined as the Kullback–
Leibler divergence from the distribution to a reference
measure m as follows. Assume that a probability distri-
bution p is absolutely continuous with respect to a mea-
sure m, i.e. is of the form p(dx) = f(x)m(dx) for some
non-negative m-integrable function f with m-integral 1,
then the relative entropy can be defined as

DKL(p∥m) =

∫
log(f(x))p(dx) =

∫
f(x) log(f(x))m(dx).

In this form the relative entropy generalises (up to change
in sign) both the discrete entropy, where the measurem is
the counting measure, and the differential entropy, where
the measure m is the Lebesgue measure. If the measure
m is itself a probability distribution, the relative entropy
is non-negative, and zero if p = m as measures. It is de-
fined for any measure space, hence coordinate indepen-
dent and invariant under co-ordinate reparameterizations
if one properly takes into account the transformation of
the measure m. The relative entropy, and implicitly en-
tropy and differential entropy, do depend on the “refer-
ence” measure m.

10 Use in combinatorics

Entropy has become a useful quantity in combinatorics.

10.1 Loomis-Whitney inequality

A simple example of this is an alternate proof of the
Loomis-Whitney inequality: for every subset A ⊆ Zd, we
have

|A|d−1 ≤
d∏

i=1

|Pi(A)|

where Pi is the orthogonal projection in the i-th coordi-
nate:

Pi(A) = {(x1, . . . , xi−1, xi+1, . . . , xd) : (x1, . . . , xd) ∈ A}.

The proof follows as a simple corollary of Shearer’s in-
equality: if X1, …, Xd are random variables and S1, …,
Sn are subsets of {1, …, d} such that every integer be-
tween 1 and d lies in exactly r of these subsets, then

H[(X1, . . . , Xd)] ≤
1

r

n∑
i=1

H[(Xj)j∈Si ]

where (Xj)j∈Si is the Cartesian product of random vari-
ables Xj with indexes j in Si (so the dimension of this
vector is equal to the size of Si).
We sketch how Loomis-Whitney follows from this: In-
deed, let X be a uniformly distributed random variable
with values in A and so that each point in A occurs with
equal probability. Then (by the further properties of en-
tropy mentioned above) Η(X) = log|A|, where |A| denotes
the cardinality of A. Let Si = {1, 2, …, i−1, i+1, …, d}.
The range of (Xj)j∈Si is contained in Pi(A) and hence
H[(Xj)j∈Si ] ≤ log |Pi(A)| . Now use this to bound the
right side of Shearer’s inequality and exponentiate the op-
posite sides of the resulting inequality you obtain.

10.2 Approximation to binomial coeffi-
cient

For integers 0 < k < n let q = k/n. Then

2nH(q)

n+ 1
≤

(
n
k

)
≤ 2nH(q),

where

H(q) = −q log2(q)− (1− q) log2(1− q). [15]

Here is a sketch proof. Note that
(
n
k

)
qqn(1 − q)n−nq is

one term of the expression

n∑
i=0

(
n
i

)
qi(1− q)n−i = (q + (1− q))n = 1.

Rearranging gives the upper bound. For the lower bound
one first shows, using some algebra, that it is the largest
term in the summation. But then,

(
n
k

)
qqn(1− q)n−nq ≥ 1

n+1

since there are n + 1 terms in the summation. Rearranging
gives the lower bound.
A nice interpretation of this is that the number of binary
strings of length n with exactly k many 1’s is approxi-
mately 2nH(k/n) .[16]
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11 See also

• Conditional entropy

• Cross entropy – is a measure of the average num-
ber of bits needed to identify an event from a set of
possibilities between two probability distributions

• Diversity index – alternative approaches to quanti-
fying diversity in a probability distribution

• Entropy (arrow of time)

• Entropy encoding – a coding scheme that assigns
codes to symbols so as to match code lengths with
the probabilities of the symbols.

• Entropy estimation

• Entropy power inequality

• Entropy rate

• Fisher information

• Hamming distance

• History of entropy

• History of information theory

• Information geometry

• Joint entropy – is the measure how much entropy is
contained in a joint system of two random variables.

• Kolmogorov-Sinai entropy in dynamical systems

• Levenshtein distance

• Mutual information

• Negentropy

• Perplexity

• Qualitative variation – other measures of statistical
dispersion for nominal distributions

• Quantum relative entropy – a measure of distin-
guishability between two quantum states.

• Rényi entropy – a generalisation of Shannon en-
tropy; it is one of a family of functionals for quanti-
fying the diversity, uncertainty or randomness of a
system.

• Randomness

• Shannon index

• Theil index

• Typoglycemia
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