Application programming interface

“API” redirects here. For other uses, see API (disam-
biguation).

For the MediaWiki (the software used by Wikipedia)
API, see mw:API

In computer programming, an application program-
ming interface (API) is a set of routines, protocols,
and tools for building software applications. An API
expresses a software component in terms of its opera-
tions, inputs, outputs, and underlying types. An API de-
fines functionalities that are independent of their respec-
tive implementations, which allows definitions and im-
plementations to vary without compromising the inter-
face. A good API makes it easier to develop a program
by providing all the building blocks. A programmer then
puts the blocks together.

In addition to accessing databases or computer hardware,
such as hard disk drives or video cards, an API can ease
the work of programming GUI components. For exam-
ple, an API can facilitate integration of new features into
existing applications (a so-called “plug-in API”). An API
can also assist otherwise distinct applications with sharing
data, which can help to integrate and enhance the func-
tionalities of the applications.

APIs often come in the form of a library that includes
specifications for routines, data structures, object classes,
and variables. In other cases, notably SOAP and REST
services, an API is simply a specification of remote calls
exposed to the API consumers.!!!

An API specification can take many forms, including
an International Standard, such as POSIX, vendor doc-
umentation, such as the Microsoft Windows API, or the
libraries of a programming language, e.g., the Standard
Template Library in C++ or the Java APIs.

An APl differs from an application binary interface (ABI)
in that an API is source code-based while an ABI is a
binary interface. For instance POSIX is an API, while
the Linux Standard Base provides an ABI. (2! [3]

1 Uses

1.1 API in procedural languages

In most procedural languages, an API specifies a set of
functions or routines that accomplish a specific task or
are allowed to interact with a specific software compo-

nent. This specification is presented in a human read-
able format in paper books or in electronic formats like
eBooks or as man pages. For example, the math API on
Unix systems is a specification on how to use the math-
ematical functions included in the math library. Among
these functions there is a function, named sqrt(), that can
be used to compute the square root of a given number.

The Unix command man 3 sqrt presents the signature of
the function sqrt in the form:

SYNOPSIS #include <math.h> double sqrt(double X);
float sqrtf(float X); DESCRIPTION sqrt computes the
positive square root of the argument. RETURNS
On success, the square root is returned. If X is real and
positive...

This description means that sqrt() function returns the
square root of a positive floating point number (single or
double precision), as another floating point number.

Hence the API in this case can be interpreted as the col-
lection of the include files used by a program, written in
the C language, to reference that library function, and its
human readable description provided by the man pages.

Similarly, other languages have procedural libraries; for
example, Perl has dedicated APIs for the same mathe-
matical task with built-in documentation available, which
is accessible using the perldoc utility:

$ perldoc -f sqrt sqrt EXPR sqrt #Return the square root
of EXPR. If EXPR is omitted, returns #square root of
$_. Only works on non-negative operands, unless #you've
loaded the standard Math::Complex module.

1.2 API in object-oriented languages

In its simplest form, an object API is a description of how
objects work in a given object-oriented language — usually
it is expressed as a set of classes with an associated list of
class methods.

For example, in the Java language, if the class Scan-
ner is to be used (a class that reads input from the user
in text-based programs), it is required to import the
java.util.Scanner library, so objects of type Scanner can
be used by invoking some of the class’ methods:

import java.util.Scanner; public class Test { public static
void main(String[] args) { System.out.printn(“Enter
your name:"); Scanner inputScanner = new Scan-
ner(System.in); String name = inputScanner.nextLine();

https://en.wikipedia.org/wiki/API_(disambiguation)
https://en.wikipedia.org/wiki/API_(disambiguation)
https://www.mediawiki.org/wiki/API
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Routines
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Video_card
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/List_of_Java_APIs
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Linux_Standard_Base
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Type_signature#Signature
https://en.wikipedia.org/wiki/Include_file
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perldoc
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Class_method
https://en.wikipedia.org/wiki/Java_(programming_language)

System.out.println(“Your name is " + name + ".”);

inputScanner.close(); } }

In the example above, methods nextLine() and close() are
part of the API for the Scanner class, and hence are de-
scribed in the documentation for that API, e.g.:

public String nextLine()

Advances this scanner past the current line and returns
the skipped input...

Returns:

the line that was skipped

Throws:

NoSuchElementException - if no line found
IllegalStateException - if this scanner is closed

More generally, in object-oriented languages, an APT usu-
ally includes a description of a set of class definitions,
with a set of behaviors associated with those classes. This
abstract concept is associated with the real functionality
exposed, or made available, by the classes that are im-
plemented in terms of class methods (or more generally
by all its public components hence all public methods,
but also possibly including any internal entity made pub-
lic like: fields, constants, nested objects, enums, etc.).

The API in this case can be conceived of as the totality of
all the methods publicly exposed by the classes (usually
called the class interface). This means that the API pre-
scribes the methods by which one interacts with/handles
the objects derived from the class definitions.

More generally, one can see the API as the collection of
all the kinds of objects one can derive from the class def-
initions, and their associated possible behaviors. Again:
the use is mediated by the public methods, but in this in-
terpretation, the methods are seen as a fechnical detail of
how the behavior is implemented.

For instance: a class representing a Stack can simply ex-
pose publicly two methods push() (to add a new item
to the stack), and pop() (to extract the last item, ideally
placed on top of the stack).

In this case the API can be interpreted as the two meth-
ods pop() and push(), or, more generally, as the idea that
one can use an item of type Stack that implements the
behavior of a stack: a pile exposing its top to add/remove
elements. The second interpretation appears more appro-
priate in the spirit of object orientation.

This concept can be carried to the point where a class
interface in an API has no methods at all, but only behav-
iors associated with it. For instance, the Java and Lisp
language APIs include the interface named Serializable,
which is a marker interface that requires each class imple-
menting it to behave in a serialized fashion. This does not
require implementation of a public method, but rather re-
quires any class that implements this interface to be based

1 USES

on a representation that can be saved (serialized) at any
time'[lower—alpha 1]

Similarly the behavior of an object in a concurrent
(multi-threaded) environment is not necessarily deter-
mined by specific methods, belonging to the interface im-
plemented, but still belongs to the API for that Class of

objects, and should be described in the documentation.
[4]

In this sense, in object-oriented languages, the API de-
fines a set of object behaviors, possibly mediated by a set
of class methods.

In such languages, the API is still distributed as a library.
For example, the Java language libraries include a set of
APIs that are provided in the form of the JDK used by the
developers to build new Java programs. The JDK includes
the documentation of the API in JavaDoc notation.

The quality of the documentation associated with an API
is often a factor determining its success in terms of ease
of use.

1.3 APl libraries and frameworks

An API is usually related to a software library: the API
describes and prescribes the expected behavior while the
library is an actual implementation of this set of rules.
A single API can have multiple implementation (or none,
being abstract) in the form of different libraries that share
the same programming interface.

An API can also be related to a software framework: a
framework can be based on several libraries implement-
ing several APIs, but unlike the normal use of an API,
the access to the behavior built into the framework is me-
diated by extending its content with new classes plugged
into the framework itself. Moreover the overall program
flow of control can be out of the control of the caller, and
in the hands of the framework via inversion of control or
a similar mechanism.>11¢]

1.4 API and protocols

An API can also be an implementation of a protocol.

When an API implements a protocol it can be based on
proxy methods for remote invocations that underneath
rely on the communication protocol. The role of the API
can be exactly to hide the detail of the transport protocol.
E.g.: RMI is an API that implements the JRMP protocol
or the ITOP as RMI-IIOP.

Protocols are usually shared between different technolo-
gies (system based on given computer programming lan-
guages in a given operating system) and usually allow the
different technologies to exchange information, acting as
an abstraction/mediation level between the two different
environments. Protocol hence can be considered remote
APISs, local APIs instead are usually specific to a given

https://en.wikipedia.org/wiki/Object_oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Class_method
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Object_oriented
https://en.wikipedia.org/wiki/Java_language
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Java_interface
https://en.wikipedia.org/wiki/Marker_interface_pattern
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Concurrent_programming
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/JDK
https://en.wikipedia.org/wiki/JavaDoc
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Framework_(computer_science)
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://en.wikipedia.org/wiki/JRMP
https://en.wikipedia.org/wiki/IIOP
https://en.wikipedia.org/wiki/RMI-IIOP

technology: hence an API for a given language cannot
be used in other languages, unless the function calls are
wrapped with specific adaptation libraries.

To enable the exchange of information among systems
that use different technologies, when an API implements
a protocol, it can prescribe a language-neutral message
format: e.g. SOAP uses XML as a general container for
the messages to be exchanged, similarly REST API can
use both XML and JSON.

1.4.1 Object exchange API and protocols

An object API can prescribe a specific object exchange
format that a program can use locally within an applica-
tion, while an object exchange protocol can define a way
to transfer the same kind of information in a message sent
to a remote system.

When a message is exchanged via a protocol between
two different platforms using objects on both sides, the
object in a programming language can be transformed
(marshalled and unmarshalled!”") in an object in a remote
and different language: so, e.g., a program written in Java
invokes a service via SOAP or IIOP written in C# both
programs use APIs for remote invocation (each locally to
the machine where they are working) to (remotely) ex-
change information that they both convert from/to an ob-
ject in local memory.

Instead when a similar object is exchanged via an API lo-
cal to a single machine the object is effectively exchanged
(or a reference to it) in memory: e.g. via memory allo-
cated by a single process, or among multiple processes us-
ing shared memory, an application server, or other shar-
ing technologies like tuple spaces.

1.4.2 Object remoting API and protocols

An object remoting API is based on a remoting protocol,
such as CORBA, that allows remote object method invo-
cation. A method call, executed locally on a proxy object,
invokes the corresponding method on the remote object,
using the remoting protocol, and acquires the result to be
used locally as return value.®!

When remoting is in place, a modification on the proxy
object corresponds to a modification on the remote ob-
ject. When only an object transfer takes place, the mod-
ification to the local copy of the object is not reflected on
the original object, unless the object is sent back to the
sending system.

1.5 API sharing and reuse via virtual ma-
chine

Some languages like those running in a virtual machine
(e.g. .NET CLI compliant languages in the Common

Language Runtime (CLR), and JVM compliant lan-
guages in the Java Virtual Machine) can share an APIL.
In this case, a virtual machine enables language interop-
erability, by abstracting a programming language using
an intermediate bytecode and its language bindings. In
these languages, the compiler performs just-in-time com-
pilation or ahead-of-time compilation transforming the
source code, possibly written in multiple languages, into
its language-independent bytecode representation.

For instance, through the bytecode representation, a pro-
gram written in Groovy or Scala language can use any
standard Java class and hence any Java API. This is pos-
sible thanks to the fact both Groovy and Scala have an
object model that is a superset of that of the Java lan-
guage; thus, any API exposed via a Java object is acces-
sible via Groovy or Scala by an equivalent object invoca-
tion translated in bytecode.

On the other side, Groovy and Scala introduce first-class
entities that are not present in Java, like closures. These
entities cannot be natively represented in Java language
(Java 8 introduced the concept of lambda expression);
thus, to enable interoperation, a closure is encapsulated
in a standard Java object. In this case the closure invo-
cation is mediated by a method named call(), which is
always present in an closure object as seen by Java, and
in Java the closure does not represent a first-class entity.

2 Web APIs

Main article: Web API

Web APIs are the defined interfaces through which in-
teractions happen between an enterprise and applications
that use its assets. An API approach is an architectural
approach that revolves around providing programmable
interfaces to a set of services to different applications
serving different types of consumers.””) When used in
the context of web development, an API is typically de-
fined as a set of Hypertext Transfer Protocol (HTTP) re-
quest messages, along with a definition of the structure
of response messages, which is usually in an Extensible
Markup Language (XML) or JavaScript Object Notation
(JSON) format. While “web API” historically has been
virtually synonymous for web service, the recent trend
(so-called Web 2.0) has been moving away from Sim-
ple Object Access Protocol (SOAP) based web services
and service-oriented architecture (SOA) towards more
direct representational state transfer (REST) style web
resources and resource-oriented architecture (ROA).['0]
Part of this trend is related to the Semantic Web move-
ment toward Resource Description Framework (RDF),
a concept to promote web-based ontology engineering
technologies. Web APIs allow the combination of multi-
ple APIs into new applications known as mashups.!!!

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Marshalling_(computer_science)
https://en.wikipedia.org/wiki/Java_language
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/IIOP
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Application_server
https://en.wikipedia.org/wiki/Tuple_spaces
https://en.wikipedia.org/wiki/CORBA
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/List_of_JVM_languages
https://en.wikipedia.org/wiki/List_of_JVM_languages
https://en.wikipedia.org/wiki/Java_Virtual_Machine
https://en.wikipedia.org/wiki/Language_interoperability
https://en.wikipedia.org/wiki/Language_interoperability
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Ahead-of-time_compilation
https://en.wikipedia.org/wiki/Groovy_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Object_model
https://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Java_8
https://en.wikipedia.org/wiki/Lambda_(programming)
https://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Resource-oriented_architecture
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Ontology_engineering
https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

2.1 Web use to share content

The practice of publishing APIs has allowed web commu-
nities to create an open architecture for sharing content
and data between communities and applications. In this
way, content that is created in one place can be dynami-
cally posted and updated in multiple locations on the web:

e Photos can be shared from sites like Flickr and
Photobucket to social network sites like Facebook
and MySpace.

e Content can be embedded, e.g. embedding a pre-
sentation from SlideShare on a LinkedIn profile.

e Content can be dynamically posted. Sharing live
comments made on Twitter with a Facebook ac-
count, for example, is enabled by their APIs.

e Video content can be embedded on sites served by
another host.

e User information can be shared from web commu-
nities to outside applications, delivering new func-
tionality to the web community that shares its user
data via an open API. One of the best examples of
this is the Facebook Application platform. Another
is the Open Social platform.!!?!

e If content is a direct representation of the physi-
cal world (e.g., temperature at a geospatial location
on earth) then an API can be considered an “Envi-
ronmental Programming Interface” (EPI). EPIs are
characterized by their ability to provide a means
for universally sequencing events sufficient to utilize
real-world data for decision making.

3 Implementations

The POSIX standard defines an API that allows writing a
wide range of common computing functions in a way such
that they can operate on many different systems (Mac OS
X, and various Berkeley Software Distributions (BSDs)
implement this interface). However, using this requires
re-compiling for each platform. A compatible API, on
the other hand, allows compiled object code to function
with no changes to the system that implements that API.
This is beneficial to both software providers (where they
may distribute existing software on new systems without
producing and —distributing upgrades) and users (where
they may install older software on their new systems with-
out purchasing upgrades), although this generally requires
that various software libraries implement the necessary
APIs as well.

Microsoft has shown a strong commitment to a backward
compatible API, particularly within their Windows API
(Win32) library, such that older applications may run on

4 API DESIGN

newer versions of Windows using an executable-specific

setting called “Compatibility Mode”.!'?!

Among Unix-like operating systems, there are many re-
lated but incompatible operating systems running on a
common hardware platform (particularly Intel 80386-
compatible systems). There have been several attempts
to standardize the API such that software vendors may
distribute one binary application for all these systems;
however, to date, none of these has met with much suc-
cess. The Linux Standard Base is attempting to do this for
the Linux platform, while many of the BSD Unixes, such
as FreeBSD, NetBSD, and OpenBSD, implement various
levels of API compatibility for both backward compati-
bility (allowing programs written for older versions to run
on newer distributions of the system) and cross-platform
compatibility (allowing execution of foreign code without
recompiling).

4 API design

Several principles are commonly used to govern the pro-
cess of designing APIs. Parnas proposed the concept of
information hiding in 1972. The principle of information
hiding is that one may divide software into modules, each
of which has a specified interface. The interfaces hide the
implementation details of the modules so that users of
modules need not understand the complexities inside the
modules. These interfaces are APIs, and as a result, APIs
should expose only those module details that clients must
know to use modules effectively. Software architecture
is dedicated to creating and maintaining high-level soft-
ware structures—which typically includes modules. APIs
reflect interfaces between modules. Thus, a system archi-
tecture is inextricably related to the APIs that express that
architecture. However, many decisions involved in creat-
ing APIs are not architectural, such as naming conven-
tions and many details on how interfaces are structured.

These details of how interfaces are structured, as well
as the software architecture, have significant impacts on
software quality. For example, Cataldo et al. found that
bugginess is correlated with logical and data dependen-
cies in software.!'*! This implies that to reduce bug rates,
software developers should carefully consider API depen-
dencies.

Conway’s Law states that the structure of a system in-
evitably reflects the structure of the organization that cre-
ated it. This suggests that to understand how APIs are
designed in the real world, one must also understand the
structures of software engineering organizations. Like-
wise, an API group should structure itself according to
what the API needs. In a study of 775 Microsoft soft-
ware engineers, Begel et al. found that in addition to
coordinating regarding API design, software engineers
even more commonly coordinate regarding schedules and
features.!!>! This reinforces the view that software orga-

https://en.wikipedia.org/wiki/Flickr
https://en.wikipedia.org/wiki/Photobucket
https://en.wikipedia.org/wiki/Social_networking_websites
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/MySpace
https://en.wikipedia.org/wiki/Slide_hosting_services
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Facebook_Platform
https://en.wikipedia.org/wiki/Open_Social
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Software_libraries
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Linux_Standard_Base
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Conway%2527s_Law

nizations collaborate extensively and that organizational
structure is important.

Several authors have created recommendations for how
to design APIs, such as Joshua Bloch! %! and Michi
Henning.['”! However, since one of the principles of API
design is that an API should be consistent with other APIs
already in use in the system, the details of API design are
somewhat language- and system-dependent.

S Release policies
The main policies for releasing an API are:

e Protecting information on APIs from the general
public. For example, Sony used to make its official
PlayStation 2 API available only to licensed PlaySta-
tion developers. This enabled Sony to control who
wrote PlayStation 2 games. This gives companies
quality control privileges and can provide them with
potential licensing revenue streams.

e Making APIs freely available. For example,
Microsoft makes the Microsoft Windows API pub-
lic, and Apple releases its APIs Carbon and Cocoa,
so that software can be written for their platforms.

A mix of the two behaviors can be used as well.

5.1 Public API implications

An API can be developed for a restricted group of users,
or it can be released to the public.

An important factor when an API becomes public is its
interface stability. Changes by a developer to a part of it—
for example adding new parameters to a function call—
could break compatibility with clients that depend on that
APL

When parts of a publicly presented API are subject to
change and thus not stable, such parts of a particular API
should be explicitly documented as unstable. For exam-
ple, in the Google Guava library the parts that are consid-
ered unstable, and that might change in a near future, are
marked with the Java annotation @Beta.!'8!

5.2 API deprecation

A public API can sometimes declare parts of itself as
deprecated. This usually means that such part of an API
should be considered candidated for being removed, or
modified in a backward incompatible way.

When adopting a third-party public API, developers
should consider the deprecation policy used by the pro-
ducer of that API; if a developer publicly releases a so-

lution based on an API that becomes deprecated, he/she
might be unable to guarantee the provided service.

6 API documentation

Professional-level documentation'”! for an API should
strive to include the following parts:

Reference documentation A description of the func-
tions and objects in the API (see the subsection API
reference documentation)

Overview and concepts A narrative description of the
different parts of the API and how they interact.
Major frameworks in the API, such as its GUI, net-
work, and file system frameworks should have their
own separate section.

Tutorials/training classes Step-by-step instructions
that show developers how to accomplish a particular
task. The text should include code that developers
can copy into their own applications. For example,
a training class for a cryptographic API would
include code that shows developers how to use the
API to encrypt a file.

Installation/getting started/troubleshooting documentation

One or more documents that show developers how
to do the following:

Obtain the software development kit (SDK) for the
API

Install the SDK on a development machine

Obtain keys, accounts, and so forth that allow access
e Deploy or provide client libraries

e Troubleshoot problems with using the SDK

SDK tools documentation Documents that describe
how to install and use build, compile, and deploy
tools

License information Documents that describe the API
license

6.1 API reference documentation

The reference documentation for an API is an intrinsic
part of any API, and without it the API is unusable. Every
aspect of the API, no matter how trivial, should be stated
explicitly.

When an API documents a library of functions in a pro-
cedural language it should include:

https://en.wikipedia.org/wiki/Joshua_Bloch
https://en.wikipedia.org/wiki/Sony
https://en.wikipedia.org/wiki/PlayStation_2
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Carbon_(computing)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/System_platform
https://en.wikipedia.org/wiki/Google_Guava
https://en.wikipedia.org/wiki/Java_annotation
https://en.wikipedia.org/wiki/Deprecation
https://en.wikipedia.org/wiki/Application_programming_interface#API_reference_documentation
https://en.wikipedia.org/wiki/Application_programming_interface#API_reference_documentation
https://en.wikipedia.org/wiki/Software_development_kit

e a description of all the data structures it depends
upon

e a description of all the functions signatures, includ-
ing:

e function names

e function parameters names (when it applies)
and types

e return type for the functions

o for each parameter if the parameter is possibly
subjected to modification inside the function

e adescription of the handling of any error con-
dition
e pre- and post-conditions or invariants

e more generally how the state has changed after
the function execution

e possible side-effects

e any accessibility or visibility constraint.
An object API should document:

e the relationship of any type to other types:
inheritance (super-types, sub-types, implemented
interfaces or traits), composite structures, delegating
entities or any mixed-in set of functionality

o the public part of an object derived from a class def-
inition, hence:

e its public constants

e the name and type of the member variables
(fields or properties) that are directly accessi-
ble for any object

o the signature of the class methods including in-
formation similar to that for functions in pro-
cedural languages, possibly including a list of
getter and setter methods used to access or
modify encapsulated information

e any class-specific operators, in case the lan-
guage supports operator overloading

e indication whether the fields or methods have
a static nature

e any constraint that applies to the objects one can cre-
ate

e nested structures, like inner classes or enumerations.

An API in a language using exception handling should re-
port any kind of exception possibly thrown and the spe-
cific condition that can cause them to happen.

An API that can be used in a concurrent environment
should include indications on how its behavior changes
due to possible concurrent access to it: general usability
in a concurrent context and possible race conditions.*!

6 API DOCUMENTATION

An API with unstable parts should document them as un-
stable.

An API with deprecated parts should document them as
deprecated.

An API that implements a communications protocol
should indicate its general behavior, and should detail:

e How to set up a communication session based on
that protocol, and prerequisites for correctly setting
up a communication session

e If the communication is stateful or stateless
e In case of stateful sessions: how to handle the state

e The notation for the kind of messages the protocol
can transport

e How the protocol handles communication errors

o If, in case of communication errors, the protocol can
resubmit a message

e Security levels supported, and how to secure com-
munication

e Authentication required to set up a session

e If the communication can be associated to a
transactional processing, and consequently how to
handle transactions

e If the communication can be embedded in an ex-
tended conversation, and consequently how to han-
dle the conversation

A graphical API should document:

Graphical elements it can handle

How to render graphical elements

How to lay out elements on the graphical canvas, and
how to compose them

e How to interact with graphical elements

How to handle user input, e.g.,

e How to add callback to specific user events

e How to read information from input fields

An API that interacts with a device should document how
to:

e Access the device to extract data from it
e Modify the state of the device, when possible

e Detect error conditions in the device.

An API should always indicate, where applicable:

https://en.wikipedia.org/wiki/Data_structures
https://en.wikipedia.org/wiki/Function_(computer_science)
https://en.wikipedia.org/wiki/Method_signature
https://en.wikipedia.org/wiki/Parameter_(computer_programming)
https://en.wikipedia.org/wiki/Parameter_(computer_programming)#Named_parameters
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Computer_error
https://en.wikipedia.org/wiki/Computer_error
https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Post-conditions
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Scoping_rules
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://en.wikipedia.org/wiki/Object_composition
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Data_hiding
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Member_variable
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Mutator_method
https://en.wikipedia.org/wiki/Operator_overloading
https://en.wikipedia.org/wiki/Static_variable
https://en.wikipedia.org/wiki/Inner_class
https://en.wikipedia.org/wiki/Enumerated_type
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Race_conditions
https://en.wikipedia.org/wiki/Deprecation
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Conversation_(computer_science)

e Language version number
e Library and other resource dependencies

e Protocol versions it is compatible with or that it im-
plements

e Operating system or platform version it supports

An API that can be used in multiple languages via some
form of language inter-operation should document any
restrictions to its use by languages other than its native
language.

API documentation can be enriched with metadata in-
formation: like Java annotation, or CLI metadata. This
metadata can be used by the compiler, tools, and by the
run-time environment to implement custom behaviors or
custom handling.

7 APIs and copyrights

Main article: Oracle America, Inc. v. Google, Inc.

In 2010, Oracle sued Google for having distributed a new
implementation of Java embedded in the Android oper-
ating system.?”) Google had not acquired any permission
to reproduce the Java API, although a similar permission
had been given to the OpenJDK project. Judge William
Alsup ruled in the Oracle v. Google case that APIs cannot
be copyrighted in the U.S, and that a victory for Oracle
would have widely expanded copyright protection and al-
lowed the copyrighting of simple software commands:

To accept Oracle’s claim would be to al-
low anyone to copyright one version of code to
carry out a system of commands and thereby
bar all others from writing their own different
versions to carry out all or part of the same
commands.211122]

In 2014, however, Alsup’s ruling was overturned on ap-
peal, though the question of whether such use of APIs
constitutes fair use was left unresolved.**!

2013 saw the creation of the “API Commons”
initiative.”* API Commons is a common place to
publish and share your own API specifications and data
models in any format such as Swagger, API Blueprint
or RAML, as well as to explore and discover the API
designs of others. The API specifications and data
models declared in API Commons are available publicly
under the Creative Commons license.

8 API examples

See also: Category:Application programming interfaces

e ASPI for SCSI device interfacing

e Cocoa and Carbon for the Macintosh
e DirectX for Microsoft Windows

e EHLLAPI

e Java APIs

e ODBC for Microsoft Windows

e OpenAL cross-platform sound API

e OpenCL cross-platform API for general-purpose
computing for CPUs & GPUs

e OpenGL cross-platform graphics API

e OpenMP API that supports multi-platform shared
memory multiprocessing programming in C, C++
and Fortran on many architectures, including Unix
and Microsoft Windows platforms.

e Server Application Programming Interface (SAPI)

e Simple DirectMedia Layer (SDL)

9 Language bindings and interface
generators

APIs that are intended to be used by more than one high-
level programming language often provide, or are aug-
mented with, facilities to automatically map the API to
features (syntactic or semantic) that are more natural in
those languages. This is known as language binding, and
is itself an APIL. The aim is to encapsulate most of the
required functionality of the API, leaving a “thin” layer
appropriate to each language.

Below are listed some interface generator tools that bind
languages to APIs at compile time:

e SWIG - an open-source interfaces bindings genera-
tor supporting numerous programming languages

e F2PY — a Fortran to Python interface generator!?>!

10 See also

o API testing

o API writer

Calling convention
e Comparison of application virtual machines

e Common Object Request Broker Architecture
CORBA

https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Java_annotation
https://en.wikipedia.org/wiki/Metadata_(CLI)
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_v._Google
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/OpenJDK
https://en.wikipedia.org/wiki/William_Alsup
https://en.wikipedia.org/wiki/William_Alsup
https://en.wikipedia.org/wiki/Oracle_v._Google
https://en.wikipedia.org/wiki/Copyrighted
https://en.wikipedia.org/wiki/Fair_use
https://en.wikipedia.org/wiki/RAML_(software)
https://en.wikipedia.org/wiki/Category:Application_programming_interfaces
https://en.wikipedia.org/wiki/Advanced_SCSI_programming_interface
https://en.wikipedia.org/wiki/SCSI
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Carbon_(computing)
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/EHLLAPI
https://en.wikipedia.org/wiki/List_of_Java_APIs
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/OpenAL
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Simple_DirectMedia_Layer
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Syntactic
https://en.wikipedia.org/wiki/Semantic
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Encapsulation_(computer_science)
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/SWIG
https://en.wikipedia.org/wiki/Fortran_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/API_testing
https://en.wikipedia.org/wiki/API_writer
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Comparison_of_application_virtual_machines
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

11

(1]

12

(1]

(2]

(3]

(4]

(5]
(6]

(71

(8]

(9]

Document Object Model DOM
Double-chance function
Foreign function interface
Interface control document
List of 3D graphics APIs
Name mangling

Open Service Interface Definitions
Platform-enabled website
Plugin

Software Development Kit
XPCOM

RAML (software)

Notes

This is typically true for any class containing simple data
and no link to external resources, like an open connection
to a file, a remote system, or an external device.

References

“Customer Information Manager (CIM)" (PDF). SOAP
API Documentation. Authorize.Net. July 2013. Retrieved
2013-09-27.

“LSB Introduction”. Linux Foundation. 21 June 2012.
Retrieved 2015-03-27.

Stoughton, Nick (April 2005). “Update on Standards”
(PDF). USENIX. Retrieved 2009-06-04.

Bloch, Joshua (2008). “Effective Java (2nd edition)".
Addison-Wesley. pp. 259-312. ISBN 978-0-321-35668-
0.

Fowler, Martin. “Inversion Of Control”.

Fayad, Mohamed. “Object-Oriented Application Frame-
works”.

“Java Platform, Enterprise Edition - The Java EE Tuto-
rial - Release 7” (PDF). Oracle Corporation. 2014. para.
31.7 Using JAX-RS with JAXB. E39031-01. Retrieved
16 June 2015.

Henning, Michi; Vinoski, Steve (1999). “Advanced
CORBA Programming with C++". Addison-Wesley.
ISBN 978-0201379273. Retrieved 16 June 2015.

http://www.hcltech.com/sites/default/files/apis_for_dsi.
pdf

(10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

12 REFERENCES

Benslimane, Djamal; Schahram Dustdar; Amit Sheth
(2008). “Services Mashups: The New Generation of Web
Applications”. [EEE Internet Computing, vol. 12, no. 5.
Institute of Electrical and Electronics Engineers. pp. 13—
15.

Niccolai, James (2008-04-23), “So What Is an Enterprise
Mashup, Anyway?", PC World

“OpenSocial API Documentation”.
Google. Retrieved 2007-11-02.

Google Code.

Microsoft (October 2001). “Support for Windows XP”.
Microsoft. p. 4.

Cataldo, M.; Mockus, A.; Roberts, J. A.; Herbsleb, J. D.
(2009). “Software Dependencies, Work Dependencies,
and Their Impact on Failures”. IEEE Transactions on Soft-
ware Engineering 99: 864—878.

Begel, Andrew; Nagappan, Nachiappan; Poile, Christo-
pher; Layman, Lucas. “Coordination in Large-Scale Soft-
ware Teams”. Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering:
1-9.

Bloch, Josh. “How to design a good API and why it mat-
ters” (PDF).

Henning, Michi. “API: Design Matters”.

“guava-libraries - Guava: Google Core Libraries for Java
1.6+ - Google Project Hosting”. Code.google.com. 2014-
02-04. Retrieved 2014-02-11.

Bisso, James; Maki, Victoria (2006). “Documenting
APIs: Writing Developer Documentation for Java APIs
and SDKs”. Bitzone. ISBN 978-0963002105. Retrieved
16 June 2015.

“Oracle and the End of Programming As We Know It”.
DrDobbs. 2012-05-01. Retrieved 2012-05-09.

“APIs Can't be Copyrighted Says Judge in Oracle Case”.
TGDaily. 2012-06-01. Retrieved 2012-12-06.

“Oracle America, Inc. vs. Google Inc.” (PDF). Wired.
2012-05-31. Retrieved 2013-09-22.

Rosenblatt, Seth (May 9, 2014). “Court sides with Ora-
cle over Android in Java patent appeal”. CNET. Retrieved
2014-05-10.

“API Commons”.
21.

API Commons. Retrieved 2014-02-

“F2PY.org”. F2PY .org. Retrieved 2011-12-18.

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Double-chance_function
https://en.wikipedia.org/wiki/Foreign_function_interface
https://en.wikipedia.org/wiki/Interface_control_document
https://en.wikipedia.org/wiki/List_of_3D_graphics_APIs
https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Open_Service_Interface_Definitions
https://en.wikipedia.org/wiki/Platform-enabled_website
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Software_Development_Kit
https://en.wikipedia.org/wiki/XPCOM
https://en.wikipedia.org/wiki/RAML_(software)
http://www.authorize.net/support/CIM_SOAP_guide.pdf
https://en.wikipedia.org/wiki/Authorize.Net
http://www.linuxfoundation.org/collaborate/workgroups/lsb/lsb-introduction
https://db.usenix.org/publications/login/2005-04/openpdfs/standards2004.pdf
https://en.wikipedia.org/wiki/USENIX
http://java.sun.com/docs/books/effective/
https://en.wikipedia.org/wiki/Addison-Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-35668-0
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-35668-0
http://martinfowler.com/bliki/InversionOfControl.html
http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html
http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html
https://docs.oracle.com/javaee/7/JEETT.pdf
https://docs.oracle.com/javaee/7/JEETT.pdf
https://en.wikipedia.org/wiki/Oracle_Corporation
http://www.informit.com/store/advanced-corba-programming-with-c-plus-plus-9780201379273
http://www.informit.com/store/advanced-corba-programming-with-c-plus-plus-9780201379273
https://en.wikipedia.org/wiki/Addison-Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0201379273
http://www.hcltech.com/sites/default/files/apis_for_dsi.pdf
http://www.hcltech.com/sites/default/files/apis_for_dsi.pdf
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2008/09&file=w5gei.xml&xsl=article.xsl
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2008/09&file=w5gei.xml&xsl=article.xsl
http://www.pcworld.com/businesscenter/article/145039/so_what_is_an_enterprise_mashup_anyway.html
http://www.pcworld.com/businesscenter/article/145039/so_what_is_an_enterprise_mashup_anyway.html
https://en.wikipedia.org/wiki/PC_World_(magazine)
https://code.google.com/apis/opensocial/docs/index.html
http://www.microsoft.com/windowsxp/using/helpandsupport/learnmore/appcompat.mspx
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://queue.acm.org/detail.cfm?id=1255422
https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/
https://books.google.com/books?id=PRzBGQAACAAJ
https://books.google.com/books?id=PRzBGQAACAAJ
https://books.google.com/books?id=PRzBGQAACAAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0963002105
http://www.drdobbs.com/jvm/232901227
http://www.tgdaily.com/business-and-law-features/63756-apis-cant-be-copyrighted-says-judge-in-oracle-case
http://www.wired.com/wiredenterprise/wp-content/uploads/2012/05/Judge-Alsup-Ruling-on-Copyrightability-of-APIs.pdf
https://en.wikipedia.org/wiki/Wired_(magazine)
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
http://apicommons.org/
http://www.f2py.org/

13 Text and image sources, contributors, and licenses

13.1 Text

e Application programming interface Source: https://en.wikipedia.org/wiki/Application_programming_interface?0ldid=673710319 Con-
tributors: Damian Yerrick, Sodium, Lee Daniel Crocker, CYD, Eloquence, Mav, Uriyan, Bryan Derksen, The Anome, Ed Poor, Andre
Engels, Sfmontyo, Miguel~enwiki, Alan_d, Ellmist, Hfastedge, Frecklefoot, Bdesham, Danja, Michael Hardy, Wapcaplet, Ixfd64, Zeno
Gantner, Skysmith, Mac, Nanshu, JWSchmidt, Mattknox, Andres, Denny, GRAHAMUK, Ehn, Hashar, Jengod, Robneild, Jitse Niesen,
Quux, Tpbradbury, Itai, Bevo, Spikey, Bearcat, Robbot, Chealer, Gak, Mountain, RedWolf, ZimZalaBim, Altenmann, Peak, Hadal, Wik-
ibot, Jleedev, Pengo, David Gerard, Enochlau, Ancheta Wis, Giftlite, JamesMLane, Darklight, Elf, Sj, Kim Bruning, Lupin, Dawidl,
Chameleon, Uzume, Edcolins, Lockeownzj00, Szajd, Cynical, Funvill, Julien~enwiki, Syvanen, Ta bu shi da yu, Slady, Adah1972, Dis-
cospinster, Rich Farmbrough, Notinasnaid, Shlomif, Bender235, Limbo socrates, RJHall, CanisRufus, Freakimus, Aude, Diomidis Spinel-
lis, RoyBoy, Bobo192, Smalljim, Redlentil, Enric Naval, Morg~enwiki, Colonoh, Apoltix, K12u, Scott Ritchie, Minghong, Obradovic
Goran, Sam Korn, Chicago god, Anteru, Espoo, Atheken, M5, Zachlipton, AaronL, Poweroid, Diego Moya, Calton, Kocio, InShaneee,
Loshsu, Wtmitchell, Velella, Suruena, Runtime, Pgimeno~enwiki, CloudNine, GeoffPurchase, Kbolino, Edwardkerlin, Skeejay, Thry-
duulf, Rocastelo, Ae-a, Robert K S, Sega381, Blackcats, Ivan007, TrentonLipscomb, Marudubshinki, King of Hearts (old account 2),
SqueakBox, Graham87, Qwertyus, Yurik, DeadlyAssassin, MZMcBride, SMC, Ronocdh, Troymccluresf, Kichik, FlaBot, Riluve, Tijuana
Brass, SteveBaker, Ahunt, Salvatore Ingala, Chobot, Bgwhite, YurikBot, Wavelength, Borgx, NTBot~enwiki, Stephenb, Manop, ENeville,
Heraclius, Dipskinny, Debot~enwiki, Daniduc, JulesH, Davemck, Voidxor, Tony1, Alex43223, Bota47, Jmalin, Plamka, Cedar101, Bryan-
monroe, JLaTondre, Teryx, Rwwww, GrinBot~enwiki, SmackBot, Dgpeck, Mihai cartoaje, KnowledgeOfSelf, Unyoyega, Fitch, Eskim-
bot, Brianski, Ohnoitsjamie, Hmains, Thumperward, DHN-bot~enwiki, Asydwaters, Zhinz, Frap, Addshore, Cybercobra, T-borg, EVula,
Dreadstar, BryanG, Miohtama, Myc2001, Dmh~enwiki, Derek farn, Harryboyles, Jidanni, Mwarf, Soumyasch, Mbeychok, RichMorin,
JHunterJ, SQGibbon, TastyPoutine, MTSbot~enwiki, Phuzion, Pwforaker, Wjejskenewr, Aeternus, Aeons, Courcelles, Jbolden1517,
Atreys, OlegMarchuk, Kickin' Da Speaker, WeggeBot, HenkeB, Old Guard, Neelix, DShantz, Andkore, Yaris678, Michaelas10, ST47,
Farrwill, Pascal. Tesson, Miketwardos, Chiefcoolbreeze, Thijs!bot, Epbr123, Davron, Humu, Muaddeeb, Escarbot, Hires an editor, An-
tiVandalBot, Seaphoto, Minirogue, MoreThanMike, Avk15gt, Spencer, Deadbeef, JAnDbot, XyBot, Husond, Deepugn, Greensburger,
VoABot II, SHCarter, Tedickey, Torchiest, Hbent, Stephenchou0722, R'n'B, Onixz100, MangeO1, Ahzahraee, Jesant13, Drewmeyers,
Looc4s, WTRiker, SlowJog, FrummerThanThou, Raise exception, NewEnglandYankee, Rktur, DeeKay64, DorganBot, Jtowler, Izno,
Infinitycomeo, Mpbaumg, Randomalious, SirSandGoblin, VolkovBot, Thisisborin9, Mrh30, JohnBlackburne, Tseay11, Philip Trueman,
TXiKiBoT, Oshwah, Rponamgi, Dschach, Rei-bot, Qxz, Michael Hodgson, Steven J. Anderson, Econterms, Jackfork, Quinet, Daper-
ata, YordanGeorgiev, Legoktm, Renatko, SieBot, John.n-irl, Kernel Saunters, Jerryobject, Bentogoa, Lavers, Nopetro, Aruton, Oxy-
moron83, SimonTrew, OKBot, Tantrumizer, Loren.wilton, ClueBot, PipepBot, Awg1010, The Thing That Should Not Be, WaltBusterkeys,
Wysprgr2005, Boing! said Zebedee, HUB, Jmclaury, LizardJr8, Dylan620, Liempt, Auntof6, DragonBot, Excirial, Lartoven, Willy-
os, Rudyray, Sun Creator, Arjayay, Amanuse, Teutonic Tamer, TheresaWilson, BOTarate, Andy16666, Johnuniq, Egmontaz, DumZi-
BoT, XLinkBot, Kurdo777, Bikingviking, WikHead, Zodon, Airplaneman, Dsimic, Varworld, Pearll’s sun, Sakhal, Betterusername, Lan-
don1980, Queenmomcat, Fieldday-sunday, Reemrevnivek, Mac Dreamstate, MrOllie, Download, LaaknorBot, Ginosbot, Tide rolls, Zor-
robot, Jarble, Aarsalankhalid, Luckas-bot, Yobot, Ptbotgourou, Fraggle81, Xqt, Scohil, Dmarquard, AnomieBOT, Efa, Piano non troppo,
90, ChristopheS, Materialscientist, Leoholbel, Mquigley8, Chadsmith729, Jpe.pinho, Vkorpor, Ffffloyd, ArthurBot, LilHelpa, Xgbot,
Vikramtheone, Capricorn42, Liorma, TechBot, Rs rams, Ohspite, Boyprose, Utype, Joeldippold, Transpar3nt, Nichobot, RibotBOT, Slur-
rymaster, IShadowed, Shadow jams, Ebessman, Prari, FrescoBot, Omniscientest, Pepe.agell, Zero Thrust, DivineAlpha, Andremi, Dr Mar-
cus Hill, PaymentVision, Rackspacecloud, Gryllida, Martyn Lovell, Lotje, Dr.mmbuddekar, Consult.kirthi, Edinwiki, Dsnelling, Visvadinu,
AbdulKhaaliq2, Julienj, Jesse V., RjwilmsiBot, 4483 APK, Ripchip Bot, Bookiewookie, Andrey86, Dennislees, DASHBot, EmausBot, John
of Reading, Davejohnsan, Coolbloke94, Detnos, Arindra r, Dewritech, Faolin42, TheSoundAndTheFury, Arthur Davies Sikopo, Bhat
sudha, Ashamerie, Fe, Oulrij, Didym, Bamyers99, Axxonnfire, Ocean Shores, Sahimrobot, Steven-arts, Ochado, Status, Thiotimoline,
Mshivaram.ie22, 28bot, ClueBot NG, Kompowiec2, J3st, CocuBot, ClaudiaHetman, Jenova20, Lord Chamberlain, the Renowned, White-
horse212, Solusinaeternum, Frietjes, SERIEZ, Jakuzem, Widr, Altaf.attari86, Wbm1058, JoeB34, SocialRadiusOly, Griznant, Meldraft,
Qx2020, TCN7IM, , Whatsnxt, Nsda, Percede, Altair, Mflore4d, Shaun, Softwareqa, Lekshmann, Eric Agbozo, Ulugen, Mo-
gism, Jamesx 12345, Sriharsh1234, Snippy the heavily-templated snail, Destroybotter, Pertolepe, C5st4wr6ch, Faizan, Epicgenius, Lsmll,
EagleMongoose, TrOILLin1212, PublicAmpersand, Blergleblerg, My name is not dave, Jianhui67, RichSaunders, Cornelia Gamst, Ja-
conaFrere, Editorfun, Usarid, Monkbot, Sofia Koutsouveli, Nohorbee, Comptly, Tpprufer, Nimal353, Sarasedgewick, Effan Ganaz YK,
Vedanga Kumar, Wolfram graetz, Whereisthesun, KasparBot, Mcoblenz, C a swtest, Distle and Anonymous: 688

13.2 Images

o File:Question_book-new.svg Source: https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:

Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

13.3 Content license

e Creative Commons Attribution-Share Alike 3.0

https://en.wikipedia.org/wiki/Application_programming_interface?oldid=673710319
https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
https://creativecommons.org/licenses/by-sa/3.0/

	Uses
	API in procedural languages
	API in object-oriented languages
	API libraries and frameworks
	API and protocols
	Object exchange API and protocols
	Object remoting API and protocols

	API sharing and reuse via virtual machine

	Web APIs
	Web use to share content

	Implementations
	API design
	Release policies
	Public API implications
	API deprecation

	API documentation
	API reference documentation

	APIs and copyrights
	API examples
	Language bindings and interface generators
	See also
	Notes
	References
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

