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Abstract

This paper presents the mechanism of In-
telligent Adaptive Curiosity. This is a drive
which pushes the robot towards situations in
which it maximizes its learning progress. It
makes the robot focus on situations which
are neither too predictable nor too unpre-
dictable. This mechanism is a source of self-
development for the robot: the complexity of
its activity autonomously increases. Indeed,
we show that it first spends time in situations
which are easy to learn, then shifts progres-
sively its attention to situations of increasing
difficulty, avoiding situations in which nothing
can be learnt.

1. An engine for self-development

Development involves the progressive increase of the
complexity of the activities of an agent with an asso-
ciated increase of its capabilities. This process is now
recognized to be crucial for the formation of non-
trivial intelligence (Brooks and Steins, 1994; Weng
et al., 2001). Thus, one of the goals of developmen-
tal robotics is to build robots which develop. Sev-
eral papers have already been written showing how
one could increase the efficiency of the learning of a
robot by putting it in situations in which the task
to be solved was of increasing difficulty (e.g. El-
man, 1993; Nagai et al., 2002). Yet, in all of them
to our knowledge, the building of learning situations
of progressive complexity was done manually by a
human. As a consequence, the robots were not de-
veloping autonomously: they were involved in pas-
sive development. The goal of this paper is to
present a mechanism which enables a robot to au-
tonomously develop in a process that we call self-
development (active development may also be
used). This means that the robot is put in a complex,
continuous, dynamic environment, and that it will be
able to figure out by itself without prior knowledge
which situations in this environment have a complex-
ity which is suited for efficient learning at a given
moment of its development.

This mechanism is called Intelligent Adaptive
Curiosity (IAC):

• it is a drive in the same sense than food level
maintenance or heat maintenance are drives, but
it is much more complex. Instead of being
about the maintenance of a physical variable, the
IAC drive is about the maintenance of an ab-
stract dynamic cognitive variable: the learning
progress, which must be kept maximal.

• it is called curiosity because maximizing the
learning progress pushes the robot towards novel
situations in which things can be learnt.

• it is adaptive because the situations that are at-
tractive change over time: indeed, once some-
thing is learnt, it will not provide learning
progress anymore.

• it is called intelligent because it keeps the robot
away both from situations which are too pre-
dictable and from situations which are too unpre-
dictable (i.e. the edge of order and chaos in the
cognitive dynamics). Indeed, naive curiosity al-
gorithms like “go in most novel or in most unpre-
dictable situations” might lead the robot to com-
pletely chaotic situations which can be dangerous
and where nothing can be learnt (e.g. bumping
very fast into walls and bouncing against it).

IAC is related to emotions and value systems
(Sporns, 2000): indeed, it tags all situations as pos-
itive or negative with real numbers and accordingly
to their learning progress potential, and makes the
robot act so that it finds itself often in positive situ-
ations, which bring internal positive rewards.

The next section will explain in detail and in a
practical case the concept of Intelligent Adaptive Cu-
riosity. This new system is more general and much
more robust than the initial system we proposed in
(Kaplan and Oudeyer, 2003), as well as the system
of (Schmidhuber, 1991).
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2. Implementing Intelligent Adaptive
Curiosity

2.1 Operationalizing the concept of learning
progress

IAC involves the concept of learning progress, which
must be operationalized. Typically, a robot possesses
a prediction machine P which allows it to predict
what is going to happen (S(t+1)) after taking action
A(t) in the sensory-motor context SM(t):

P(A(t),SM(t))=S(t+1)

After making the prediction S(t+1) and taking the
action, the robot can measure the actual consequence
Sa(t+1), and compute its error in prediction:

E(t) = absoluteValue(S(t+1) - Sa(t+1))

Along with time the robot gets a list of successive
errors: LE = E(0), E(1), E(2), E(3), ...., E(t). This
list can then be used to measure the evolution of
the mean error in prediction, based on a sliding win-
dow which computes the mean of the last DELAY
errors, which gives a new list: LEm = Em(DELAY),
Em(DELAY+1), Em(DELAY+2), ..., Em(t) (with
Em(t) = mean of E(t), E(t-1), ..., E(t-DELAY)).
We can then propose a first definition of the learning
progress at time t as

LP(t) = -(Em(t) - Em(t-DELAY))

In the set-up presented in the next section, DE-
LAY=150. In order to be able to evaluate the value
of a potential situation at time t+1 in terms of learn-
ing progress, the robot must also be able to predict
E(t+1), so that it can evaluate Em(t+1) and then
LP(t+1). For doing this, it also possess a meta-
learning machine MP which learns to predict the er-
rors of P:

MP(A(t), SM(t)) = Ep(t+1)

(and the learning is done when it gets the actual error
E(t+1)).

The algorithm is then quite straightforward: at
each time step t, for choosing the action to take, the
robots makes a list of possible actions and evaluates
each of them in terms of the learning progress it may
bring. If the space of action is continuous, then it is
sampled randomly. For the evaluation of each action
Ai(t), the robot computes MP(Ai(t), SM(t))=Epi(t),
then it computes the associated learning progress
LPi(t), and chooses the action for which the pre-
dicted learning progress is maximal. The robot also
can choose a random action with a probability of
0.1 (this allows to discover new niches of learning
progress). Indeed, if we view learning progress as
an internal reward to be maximized, we are here in
a classical problem of reinforcement learning (Kael-
bling et al., 1996) where the trade-off between ex-
ploitation and exploitation has to be solved. We

chose here a simple policy to manage this trade-off,
since this aspect is not the topic of the paper, but
more complex policies could be used as well.

Now, if one try to use this algorithm right away
as in (Kaplan and Oudeyer, 2003), this will not
lead the robot towards the desired result (i.e. self-
development). Indeed, in most environments, the
robot will find a behaviour which will provide high
values of LP(t), but will be very inefficient in terms
of learning and will not provide the ability to de-
velop. This behaviour is the alternation between
very simple and predictable situations in which the
error rate is low, and complex unpredictable situa-
tions in which the error rate is high. Indeed, passing
from the later to the former produces a decrease of
the error rate, and is evaluated as learning progress!
For example, this would make a mobile robot spends
its time bumping randomly against walls (where the
error rate of predicting what’s going to happen after
the bump is high) and then stopping in front of the
wall, looking at it (the image and the position are
fixed and easy to predict).

So there needs to be a more “intelligent” defini-
tion of learning progress. The idea is that instead
of comparing the mean error in prediction between
situations which are successive in time, we will com-
pare the mean error in prediction between situations
which are similar (so with the example above, when
the robot is stopped in front of the wall, and has a
low error rate, it will compare this error rate with the
last time it was stopped in front of the wall, and not
with the previous situations in which he was bump-
ing into the walls. Now, the error rate will be in both
comparable situations very low, and so no progress
will be predicted). We will now present a way to
implement this calculation.

The machine P of the robot is now composed by
a set of experts which are specialized in particular
zones of the sensory-motor space, i.e. in particular
kinds of situations. Each expert possesses a set of
training examples, and each training example is pos-
sessed by only one expert. This set of examples is
used to make predictions (here we use the nearest
neighbours algorithm). At the beginning, there is
only one expert. As new examples are added, a cri-
terion C1 is used to decide whether this expert should
be split into two experts. Here, for simplicity and for
computational efficiency, the criterion is: split when
the number of examples is above a threshold set to
NS (here NS=250). Now, there is a second criterion
C2 which decides how the expert is split into two ex-
perts, i.e. how the set of examples is split in two parts
which will be inherited by the new experts. The cri-
terion C2 consists in finding a dimension to cut, and
a cut value, to minimize the variance of the examples
(in the output space) inherited by the experts while
keeping the size of the two example sets relatively
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balanced. Each of the new experts are then splitted
themselves recursively when the criterion C1 is re-
alized. At each splitting, the experts keep the cut
values which were used to create them, as well as the
cut values of their parent expert. When a prediction
has to be made given A(t) and SM(t), one first deter-
mines which is the expert which is a specialist for the
zone of the sensory-motor space which contains this
point. This is simply done by using the successive
cut values stored by the expert.

Additionally, each expert i keeps track of the pre-
diction errors it has made, and computes the mean
error in prediction in the last DELAY examples it
has evaluated (here, DELAY=150), noted Empi(t).
With this, curve, it then computes the variation of
this mean over the last DELAY time steps:

LPi(t) = -(Empi(t) - Empi(t-DELAY))

This value is the way the robot now evaluates its
learning progress. As it is local and averaged, the last
computed value is used to predict the next learning
progress value. This works very well in practice.

2.2 Evaluating the algorithm in a simulated
robotic set-up

We use here a robotic simulation implemented with
Webots (Webots, 2004). The robot is a box with two
wheels (see figure 1). Each wheel can be controlled
by setting its speed (real number between -1 and
1). The robot can also emit a sound of a particular
frequency. So the action space is 3-dimensional and
continuous: (left speed, right speed, frequency). The
robot moves in a square room with walls. There is
a toy in this room that can also move. This toy
moves randomly if the sound emitted by the robot
has a frequency belonging to zone f1=[0;0.33]. It
stops moving if the sound is in zone f2=[0,34;0,66].
The toy jumps into the robot if the sound is in zone
f3=[0,67;1].

The robot perceives the distance to the toy and to
the walls with infra-red sensors. Its prediction ma-
chine P tries to predict the next distance to the toy,
given the current sensory-motor context and an ac-
tion to take (i.e. a setting of (left speed, right speed,
frequency)). Using the IAC algorithm, the robot will
thus act in order to maximize its learning progress in
terms of predicting the next toy position. The robot
has no prior knowledge, and in particular it does not
know that there is a difference between setting the
speed of the wheels and setting the sounds frequency
(for the robot, these are unlabeled wires). It does
not know that there exist three zones of the sensory-
motor space of different complexities: the zone cor-
responding to sounds in f1, where the distance to the
toy can not be predicted since it is random; the zone
with sounds in f3, where the distance to the toy is
easy to learn and predict (always around 0); and the

Figure 1: The robotic set-up : a two-wheeled robot

moves in a square room and there is also an intelligent

toy (represented by a sphere) which moves according to

the sounds that the robot produces. The robot has wall

sensors and perceives the distance to the toy. The robot

tries to predict the position of the toy after performing

a given action, which is a setting of (left wheel speed,

right wheel speed, sound frequency). He chooses the ac-

tions for which it predicts its learning progress will be

maximal.

zone with sounds in f2, where the distance to the
toy is predictable (and learnable) but complex and
dependant of the setting of the wheel speeds.

Yet, we will now show that the robot manages to
autonomously discover these three zones, evaluate
their relative complexity, and exploit this informa-
tion for organizing its own behaviour.

Figure 2 shows a representation of the set of ex-
perts (and their respective error rate) which were
built during a simulation. The graph appears as a
tree. Each leaf of the tree corresponds to one ex-
pert, and each path from the root of the tree to a
leaf shows the evolution of the mean error in predic-
tion of the leaf expert. This path is partly shared by
experts which have the same expert ancestor, which
explains the tree structure (for example, at the root
of the tree, there is only one path which corresponds
to the error rate of the initial expert, and then when
this expert is split, two paths appear, each corre-
sponding to a children expert). This figure shows
that there are basically three groups of experts that
are formed. After looking in detail at their struc-
ture, we discovered that each group of experts was
self-coherent: one of them corresponded to situations
with sounds in f1, another with sounds in f2, and
another with sounds in f3. The robot first made a
split between situations with sounds in f3 on the one
hand, and situations with sounds in f1 and f2 on the
other hand. It discovered that initially the situations
with sounds in f3 were the most important sources
of learning progress. But as they were also very easy
to learn, quickly the learning progress decreased in
these situations. The robot then used its splitting
of the situations with sounds in f1 and f2 into sit-
uations with sounds with f1 on the one hand, and
situations with sound f2 on the other hand. This
splitting was done thanks to the random action se-
lection that the robot sometimes made while explor-
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Figure 2: Representation of the tree of experts created

in a simulation with the IAC action selection algorithm.

ing situations with sound f3. The robot then accu-
rately evaluates that the situations with sounds in
f2 provide the maximal amount of learning progress,
while the situations with sounds in f1 are chaotic and
provide no significant learning progress. The robot
then begins to focus its actions in the zone of the
sensory-motor space where the sound is in f2. This
sequencing of behaviours of increasing complexity is
represented on figure 3 where each curve represents
the percentage of time (at given periods of the sim-
ulation) that the robot spends in each of the three
kinds of situations.

It then tries to vary its motor speeds within this
sub-space with sounds in f2, learning to predict how
these speeds affect the distance to the toy. We have
obtained also results showing that this exploration of
the motor speed subspace is organized, and that the
speed settings are themselves done optimally so as
to maximize the learning progress. We will present
these results in a future paper.

This shows a crucial result from a developmental
robotics point of view : the IAC algorithm allows a
robot to autonomously scale its behaviour so that it
explores sensory-motor situations of increasing com-
plexity and avoids being trapped exploring situations
in which there is nothing to learn (here the robot al-
ways minimized the time spent emitting sounds in
f1, where nothing could be learnt). The algorithm is
also a way to implement a kind of attention mech-
anism (the robot focuses first systematically on one
kind of situations, and then focuses systematically
on another kind of situations).

3. Conclusion

We showed how the IAC algorithm allows a robot
to autonomously scale the complexity of its learn-
ing situations by successively and actively focusing
its activity on problems of progressively increasing
difficulty. This is achieved through the efficient and
operational discovery of zones of the sensory-motor

Figure 3: Evolution of the percentage of time spent in

each of the three situations.

space of varying complexity, then through the ac-
curate evaluation of the relative complexity of these
zones in terms of potential learning progress, and
then through the exploitation of this information
by the robot to self-organize its behaviour. To our
knowledge, IAC is thus the first method which allows
a developmental robot to go through all these steps
autonomously and without prior knowledge.
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